Skip to main content
Log in

Superior Adsorption Performance of TiO2-Loaded Chitosan Biochar for Rhodamine B Dye

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In the present study, a series of TiO2-loaded chitosan biochar (TiO2/CSB) have been synthesized by loading different TiO2, and applied for the uptake of cationic dye Rhodamine B (Rh B). The structure and properties of TiO2/CSB composites before and after adsorption have been analyzed by infrared spectroscopy, powder X-ray diffraction, field emission scanning electron microscopy coupled with energy disperse spectroscopy, and X-ray photoelectron spectroscopy. The effect of significant parameters such as TiO2 content of adsorbent, initial dye concentration, pH, dose, time, temperature, and co-existing anion in batch adsorption experiments have been investigated. TiO2/CSB composite show enhanced adsorption performance for Rh B dye compared to pure TiO2 and chitosan biochar. Kinetic study verifies that pseudo second order kinetic model is the predominant model, and the equilibrium data have been compatible well with the Langmuir isotherm. As an efficient adsorbent, TiO2/CSB has relatively high adsorption performance after 5 times of recycling. Results suggest that TiO2/CSB has good environmental remediation and water treatment application characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. R. Jain, M. Mathur, S. Sikarwar, and A. Mittal, J. Environ. Manage. 85, 956 (2007). https://doi.org/10.1016/j.jenvman.2006.11.002

  2. E. Altintig, M. Onaran, A. Sari, H. Altundag, and M. Tuzen, Mater. Chem. Phys. 220, 313 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.077

  3. A. Phuruangrata, R. Dumkaewa, B. Kuntalueb, T. Thongtem, and S. Thongtem, Russ. J. Inorg. Chem. 67, 1004 (2022). https://doi.org/10.1134/S0036023622070191

  4. A. S. Shaporev, V. K. Ivanov, A. E. Baranchikov, and Yu. D. Tret’yakov, Russ. J. Inorg. Chem. 51, 1523 (2006). https://doi.org/10.1134/S0036023606100019

  5. H. Kaur, S. Kaushal, S. Kumar, R. Badru, P. Singh, and S. Mittal, Russ. J. Inorg. Chem. 65, 1862 (2020).https://doi.org/10.1134/S0036023620120062

    Article  CAS  Google Scholar 

  6. F. Mashkoor and A. Nasar, Environ. Chem. Lett. 18, 605 (2020). https://doi.org/10.1007/s10311-020-00970-6

  7. E. Altintig, H. Altundag, M. Tuzen, and A. Sari, Chem. Eng. Res. Des. 122, 151 (2017). https://doi.org/10.1016/j.cherd.2017.03.035

  8. L. D. Pompeu, P. C. L. Muraro, and G. Chuy, Environ. Sci. Pollut. R 29, 49858 (2022). https://doi.org/10.1007/s11356-022-19259-y

    Article  CAS  Google Scholar 

  9. K. R. Shoueir, Environ. Sci. Pollut. R 27, 33020 (2020). https://doi.org/10.1007/s11356-020-09341-8

    Article  CAS  Google Scholar 

  10. R. Rashid, I. Shafiq, and M. J. Iqbal, J. Environ. Chem. Eng. 9, 105480 (2021). https://doi.org/10.1016/j.jece.2021.105480

    Article  CAS  Google Scholar 

  11. A. Modwi, Walid M. Daoush, and Miklad El-Eteaby, J. Mater. Sci.: Mater. Electron. 33, 24869 (2022). https://doi.org/10.1007/s10854-022-09197-3

    Article  CAS  Google Scholar 

  12. R. Gajera, R.V. Patel, and A. Yadav, J. Water Process. Eng. 49, 102993 (2022). https://doi.org/10.1016/j.jwpe.2022.102993

    Article  Google Scholar 

  13. A. M. Aljeboree, N. D. Radia, and L. S. Jasim, J. Ind. Eng. Chem. 109, 475 (2022). https://doi.org/10.1016/j.jiec.2022.02.031

  14. H. Cheng, Y.L. Liu, and X. Li, J. Hazard. Mater. 415, 125749 (2021). https://doi.org/10.1016/j.jhazmat.2021.125749

    Article  CAS  PubMed  Google Scholar 

  15. O. S. Bello and M. A. Ahmad, Separation Sci. Technol. 47, 903 (2012).https://doi.org/10.1080/01496395.2011.630335

  16. Y. Y. Wang, W. J. Yang, and X. J. Chen, Appl. Catal. B: Environ. 220, 337 (2018). https://doi.org/10.1016/j.apcatb.2017.08.004

  17. Z. Chai, B. Liu, P. Lv, Y. H. Bai, and J. F. Wang, Fuel 333, 126318 (2023). https://doi.org/10.1016/j.fuel.2022.126318

    Article  CAS  Google Scholar 

  18. A. A. Aryee, C. P. Gao, R. P. Han, and L. B. Qu, J. Environ. Chem. Eng. 10, 108205 (2022). https://doi.org/10.1016/J.JECE.2022.108205

    Article  CAS  Google Scholar 

  19. Y. Zhao, L. Zhu, and W. Li, J. Mol. Liq. 293, 111516 (2019). https://doi.org/10.1016/j.molliq.2019.111516

    Article  CAS  Google Scholar 

  20. M. Wei, N. Zhao, Y. Gang, L. Tian, and W. Ren, Desalination 268, 20 (2011). https://doi.org/10.1016/j.desal.2010.09.045

    Article  CAS  Google Scholar 

  21. A. Mittal, J. Mittal, A. Malviya, D. Kaur, and V. Gupta, J. Colloid Interface Sci. 343, 463 (2010). https://doi.org/10.1016/j.jcis.2009.11.060

    Article  CAS  PubMed  Google Scholar 

  22. E. Hoseinzadeh, M. R. Samarghandi, G. vMcKay, N. Rahimi, and J. Jafari, Desalin. Water Treat. 52, 4999 (2014). https://doi.org/10.1080/19443994.2013.810355

    Article  CAS  Google Scholar 

  23. D. Mirzaei, A. Zabardasti, and Y. Mansourpanah, J. Inorg. Organomet. 30, 2067 (2020). https://doi.org/10.1007/s10904-019-01369-9

    Article  CAS  Google Scholar 

  24. A.E. Ghaly, R. Ananthashankar, and M. Alhattab, J. Chem. Eng. Process Technol. 5, 18 (2014). https://doi.org/10.4172/2157-7048.1000182

    Article  CAS  Google Scholar 

  25. M. Danish, W. A. Khanday, and R. Hashim, Ecotoxicol. Environ. Saf. 139, 280 (2017). https://doi.org/10.1016/j.ecoenv.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  26. S. Mor, K. Ravindra, and N. R. Bishnoi, Bioresour. Technol. 98, 954 (2007). https://doi.org/10.1016/j.biortech.2006.03.018

  27. H. Mittal, N. Ballav, and S. B. Mishra, J. Ind. Eng. Chem. 20, 2184 (2014). https://doi.org/10.1016/j.jiec.2013.09.049

    Article  CAS  Google Scholar 

  28. R. Zhao, Y. Li, B. Sun, S. Chao, X. Li, C. E. Wang, and G. Zhu, Chem. Eng. J. 359, 1603 (2019). https://doi.org/10.1016/j.cej.2018.11.011

    Article  CAS  Google Scholar 

  29. A.M. Abdel-Mohsen, J. Jancar, L. Kalina, and Asaad F. Hassan, Carbohyd. Polym. 234, 115861 (2020). https://doi.org/10.1016/j.carbpol.2020.115861

    Article  CAS  Google Scholar 

  30. M. Tuzen, A. Sarı, and T. A. Saleh, J. Environ. Manage. 206, 170 (2018). https://doi.org/10.1016/j.jenvman.2017.10.016

  31. C. Bhattacharjee, S. Dutta, and V. K. Saxena, Environ. Adv. 2, 100007 (2020). https://doi.org/10.1016/j.envadv.2020.100007

    Article  Google Scholar 

  32. F. Bagheban Shahri, A. Niazi, A. Akrami. Polycycl. Aromat. Compd. 38, 141 (2018).https://doi.org/10.1080/10406638.2016.1173074

  33. N. E. S. E. Ertugay and Y. K. Bayhan, Desalination 255, 137 (2010). https://doi.org/10.1016/j.desal.2010.01.002

    Article  CAS  Google Scholar 

  34. E. Taheri, A. Fatehizadeh, E. C. Lima, and M. Rezakazemi, Chemosphere 295, 133850 (2022). https://doi.org/10.1016/j.chemosphere.2022.133850

    Article  CAS  PubMed  Google Scholar 

  35. H. Y. Pan, J. M. Gu, and K. Y. Hou, J. Environ. Chem. Eng. 10, 107157 (2022). https://doi.org/10.1016/j.jece.2022.107157

    Article  CAS  Google Scholar 

  36. P. Gharbani and A. Mehrizad, Carbohyd. Polym. 277, 118860 (2022). https://doi.org/10.1016/j.carbpol.2021.118860

  37. P. Y. Ren, X. P. Ren, and J. Y. Xu, Appl. Surf. Sci. 597, 153699 (2022). https://doi.org/doi 10.1016/j.apsusc.2022.153699

    Article  CAS  Google Scholar 

  38. S. Thakur, J. Chaudhary, and A. Thakur, Chemosphere 303, 134917 (2022). https://doi.org/10.1016/j.chemosphere. 2022.134917

  39. Y. Liu and J. Yang, Gels 8, 675 (2022). https://doi.org/10.3390/gels810067540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. T. A. Saleh and A. A. Al-Saadi, Surf. Interface Anal. 47, 785(2015). https://doi.org/10.1002/sia.577541

    Article  CAS  Google Scholar 

  41. Y. R. Song, K. S. Wang, and F. J. Zhao, Water 14, 3048(2022). https://doi.org/10.3390/w1419304842

    Article  CAS  Google Scholar 

  42. Y. Wang, Y. Su, and W. Fang, Powder Technol. 363, 337 (2020). https://doi.org/10.1016/j.powtec.2020.01.009

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Tianshui city (2020- FZJHK-3111, 2021-FZJHK-1302), College Teachers Innovation Fund project of Gansu Province (2023B-142), and the Scientific Research Project of Gansu Province (21JR11RE038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-qiang Feng.

Ethics declarations

The authors declare that there are no conflicts of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao-fang Li, Li, Rx., He, Ds. et al. Superior Adsorption Performance of TiO2-Loaded Chitosan Biochar for Rhodamine B Dye. Russ. J. Inorg. Chem. 68, 1084–1095 (2023). https://doi.org/10.1134/S0036023622602811

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622602811

Keywords:

Navigation