Skip to main content
Log in

High-Temperature Electrically Conductive Polymer Composites with Single-Walled Carbon Nanotubes

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

High-temperature composite materials comprising single-walled carbon nanotubes embedded in a polybenzimidazole (PBI) polymer matrix with a weight percentage of nanotubes from 1 to 5% were prepared and characterized. Film composite samples were prepared by flow-coating from dispersions of nanotubes in 2% PBI solution in N-methyl-2-pyrrolidone. The temperature dependences of electrical resistance of the composites were studied in the range from room temperature to 300°C in a high vacuum at a pressure less than 1 × 10–3 Pa. The first heating cycle to 300°C gave rise to an increase in room-temperature electrical resistance of the samples due to the desorption of oxygen from the nanotubes. For the composites containing 5 and 1% nanotubes, the change was about 1.4 and 500 times, respectively. This increase was reversible: when the samples were transferred to the ambient air, the electrical resistance relaxed to its initial value. The thermal stability of the composites was proved by the repeatability of the subsequent heating cycles and by thermogravimetric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Y. Wang, A. X. Wang, Y. Wang, et al., Sensors Actuators A Phys. 199, 265 (2013). https://doi.org/10.1016/j.sna.2013.05.023

    Article  CAS  Google Scholar 

  2. L. S. Zhou, S. Y. Jung, E. Brandon, et al., IEEE T. Electron Dev. 53, 380 (2006) https://doi.org/10.1109/TED.2005.861727

    Article  Google Scholar 

  3. N. Hu, Y. Karube, M. Arai, et al., Carbon 48, 680 (2010). https://doi.org/10.1016/j.carbon.2009.10.012

    Article  CAS  Google Scholar 

  4. X. W. Yu, H. H. Cheng, M. Zhang, et al., Nat. Rev. Mater. 2, 13 (2017). https://doi.org/10.1038/natrevmats.2017.46

    Article  CAS  Google Scholar 

  5. Q. Y. Li, S. J. Luo, Y. Wang, et al., Sens. Actuators, A 300, 7 (2019). https://doi.org/10.1016/j.sna.2019.111664

    Article  CAS  Google Scholar 

  6. P. F. Zhan, W. Zhai, N. Wang, et al., Mater. Lett. 236, 60 (2019). https://doi.org/10.1016/j.matlet.2018.10.068

    Article  CAS  Google Scholar 

  7. H. Kim, A. A. Abdala, and C. W. Macosko, Macromolecules 43, 6515 (2010). https://doi.org/10.1021/ma100572e

    Article  CAS  Google Scholar 

  8. T. Kuilla, S. Bhadra, D. Yao, et al., Prog. Polym. Sci. 35, 1350 (2010). https://doi.org/10.1016/j.progpolymsci.2010.07.005

    Article  CAS  Google Scholar 

  9. R. Verdejo, M. M. Bernal, L. J. Romasanta, et al., J. Mater. Chem. 21, 3301 (2011). https://doi.org/10.1039/c0jm02708a

    Article  CAS  Google Scholar 

  10. X. Huang, X. Qi, F. Boey, et al., Chem. Soc. Rev. 41, 666 (2012). https://doi.org/10.1039/c1cs15078b

    Article  CAS  PubMed  Google Scholar 

  11. L. He and S. C. Tjong, Mater. Sci. Eng., R 109, 1 (2016). https://doi.org/10.1016/j.mser.2016.08.002

  12. C. I. Idumah and A. Hassan, Rev. Chem. Eng. 32, 223 (2016). https://doi.org/10.1515/revce-2015-0038

    Article  CAS  Google Scholar 

  13. D. N. Nguyen and H. Yoon, Polymers 8, 118 (2016). https://doi.org/10.3390/polym8040118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. H. Saleem, A. Edathil, T. Ncube, et al., Macromol. Mater. Eng. 301, 231 (2016). https://doi.org/10.1002/mame.201500335

    Article  CAS  Google Scholar 

  15. F. X. Yin, J. Z. Yang, H. F. Peng, et al., J. Mater. Chem. C 6, 6840 (2018). https://doi.org/10.1039/c8tc00839f

    Article  CAS  Google Scholar 

  16. D. Mainwaring, P. Murgaraj, and N. E. M. Huertas, WO Patent 125253A1, 2006. https://patentimages.storage.googleapis.com/73/6f/bb/41950bc07f72ed/WO20-06125253A1.pdf.

  17. H. Vogel and C. S. Marvel, J. Polym. Sci., A: Polym. Chem. 34, 1125 (1996). https://doi.org/10.1002/pola.1996.826

    Article  CAS  Google Scholar 

  18. T.-S. Chung, J. Macromol. Sci. Part C 37, 277 (1997). https://doi.org/10.1080/15321799708018367

    Article  Google Scholar 

  19. High Temperature Polymer Blends, Ed. by M. T. DeMeuse (Woodhead Publishing, 2014).

    Google Scholar 

  20. M. Okamoto, T. Fujigaya, and N. Nakashima, Adv. Funct. Mater. 18, 1776 (2008). https://doi.org/10.1002/adfm.200701257

    Article  CAS  Google Scholar 

  21. M. Okamoto, T. Fujigaya, and N. Nakashima, Small 5, 735 (2009). https://doi.org/10.1002/smll.200801742

    Article  CAS  PubMed  Google Scholar 

  22. M. Ueda, M. Sato, and A. Mochizuki, Macromolecules 18, 2723 (1985). https://doi.org/10.1021/ma00154a060

    Article  CAS  Google Scholar 

  23. A. Y. Leykin, A. I. Fomenkov, E. G. Galpern, et al., Polymer 51, 4053 (2010). https://doi.org/10.1016/j.polymer.2010.06.053

    Article  CAS  Google Scholar 

  24. P. E. Eaton, G. R. Carlson, and J. T. Lee, J. Org. Chem. 38, 4071 (1973). https://doi.org/10.1021/jo00987a028

    Article  CAS  Google Scholar 

  25. B. C. Kholkhoev, E. N. Gorenskaya, S. A. Bal’zhinov, et al., Russ. J. Appl. Chem. 89, 780 (2016). https://doi.org/10.1134/s1070427216050153

    Article  CAS  Google Scholar 

  26. V. A. Kuznetsov, A. N. Lavrov, B. C. Kholkhoev, et al., J. Contemp. Phys. 55, 57 (2020). https://doi.org/10.3103/s1068337220010089

    Article  CAS  Google Scholar 

  27. N. W. Brooks, R. A. Duckett, J. Rose, et al., Polymer 34, 4038 (1993). https://doi.org/10.1016/0032-3861(93)90664-V

    Article  CAS  Google Scholar 

  28. A. V. Eletskii, A. A. Knizhnik, B. V. Potapkin, et al., Phys. Usp. 58, 209 (2015). https://doi.org/10.3367/UFNe.0185.201503a.0225

    Article  CAS  Google Scholar 

  29. A. B. Kaiser and V. Skákalová, Chem. Soc. Rev. 40, 3786 (2011). https://doi.org/10.1039/C0CS00103A

    Article  CAS  PubMed  Google Scholar 

  30. M. S. Dresselhaus and P. C. Eklund, Adv. Phys. 49, 705 (2000). https://doi.org/10.1080/000187300413184

    Article  CAS  Google Scholar 

  31. P. G. Collins, K. Bradley, M. Ishigami, et al., Science 287, 1801 (2000). https://doi.org/10.1126/science.287.5459.1801

    Article  CAS  PubMed  Google Scholar 

  32. P. N. D’yachkov, Russ. J. Inorg. Chem. 56, 2160 (2011). .https://doi.org/10.1134/S003602361114002633

    Article  Google Scholar 

  33. K. Bradley, S.-H. Jhi, P. G. Collins, et al., Phys. Rev. Lett. 85, 4361 (2000). https://doi.org/10.1103/PhysRevLett.85.4361

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation Grant N 21-79-00224, https://rscf.ru/project/21-79-00224/ (the composite syntheses and electrophysical studies); the authors acknowledge the Ministry of Science and Higher Education of the Russian Federation through project No. 121031700314-5 (the characterization of the composites).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kuznetsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.A., Fedorov, A.A., Kholkhoev, B.C. et al. High-Temperature Electrically Conductive Polymer Composites with Single-Walled Carbon Nanotubes. Russ. J. Inorg. Chem. 68, 221–226 (2023). https://doi.org/10.1134/S0036023622602513

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622602513

Keywords:

Navigation