Skip to main content
Log in

Magnetic Photocatalysts Based on Nanocrystalline Manganese-Doped Titanium Dioxide

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Manganese-doped anatase with a nanosized morphology (as spherically shaped nanoparticles) has been synthesized under hydrothermal conditions. It has been shown that manganese is incorporated into the titanium dioxide structure to form substitutional solid solutions. At high dopant concentrations, part of the introduced manganese goes to the formation of α-MnO2. A significant increase in the optical activity in the visible range and a decrease in the bandgap width down to ~2.4 eV are observed for manganese-doped anatase because of the appearance of extrinsic (multivalent Mn ions) and intrinsic compensating (oxygen vacancies) defects. It has been found that manganese-doped samples are diluted magnetic semiconductors, and the magnetic characteristics increase with increasing manganese content. All manganese-containing samples demonstrate photocatalytic activity in the degradation reaction of indigo carmine when irradiated with visible light. The degree of dye degradation depends on the content of manganese in the samples and reaches >90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. K. Umar, A. Aris, H. Ahmad, et al., J. Anal. Sci. Technol. 7, 29 (2016). https://doi.org/10.1186/s40543-016-0109-2

    Article  CAS  Google Scholar 

  2. T. T. Loan and N. N. Long, Comm. Phys. 29, 251 (2019). https://doi.org/10.15625/0868-3166/29/3/13854

    Article  Google Scholar 

  3. S. A. Pyachin, N. F. Karpovich, A. V. Zaitsev, et al., Fund. Issled. 10, 261 (2017).

    Google Scholar 

  4. V. N. Krasil’nikov, V. P. Zhukov, L. A. Perelyaeva, et al., Phys. Solid State 55, 1903 (2013). https://doi.org/10.1134/S1063783413090199

    Article  CAS  Google Scholar 

  5. I. V. Baklanova, V. N. Krasil’nikov, V. P. Zhukov, et al., Russ. J. Inorg. Chem. 59, 29 (2014). https://doi.org/10.7868/80044457X14020044

    Article  CAS  Google Scholar 

  6. D. P. Opra, S. V. Gnedenkov, S. L. Sinebryukhov, et al., Chem. Phys. 538, 110864 (2020). https://doi.org/10.1016/j.chemphys.2020.110864

    Article  CAS  Google Scholar 

  7. L. N. Obolenskaya, G. M. Kuz’micheva, Ya. V. Zubavichus, et al., RF Patent 2565689, Byull. Izobret., 2015, no. 29, p. 14.

  8. K. C. Nguyen, N. M. Nguyen, V. Q. Duong, et al., J. Electron. Mater. 50, 1942 (2021). https://doi.org/10.1007/s11664-020-08699-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Z. He, T. Hong, J. Chen, et al., Sep. Purif. Technol. 96, 50 (2012). https://doi.org/10.1016/j.seppur.2012.05.005

    Article  CAS  Google Scholar 

  10. O. N. Makarevich, A. V. Ivanov, A. I. Gavrilov, et al., Russ. J. Inorg. Chem. 65, 299 (2020). https://doi.org/10.31857/S0044457X20030083

    Article  CAS  Google Scholar 

  11. D. A. Kozlov, S. A. Tikhonova, P. V. Evdokimov, et al., Russ. J. Inorg. Chem. 65, 1958 (2020). https://doi.org/10.31857/S0044457X20120090

    Article  CAS  Google Scholar 

  12. O. Saber, H. M. Kotb, M. Osama, et al., Nanomaterials 12, 440 (2022). https://doi.org/10.3390/nano12030440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. T. Noman, M. A. Ashraf, and A. Ali, Environ. Sci. Pollut. Res. 26, 3262 (2019). https://doi.org/10.1007/s11356-018-3884-z

    Article  CAS  Google Scholar 

  14. M. A. Pugachevskii, V. A. Mamontov, S. N. Nikolaeva, et al., Izv. Yugo-Zapad. Gos. Univ., Ser. Tekh. Tekhnol. 11, 104 (2021).

    Google Scholar 

  15. I. Ali, M. Suhail, Z. A. Alothman, et al., RSC Adv. 8, 30125 (2018). https://doi.org/10.1039/C8RA06517A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. G. S. Zakharova, Z. A. Fattakhova, I. S. Puzyrev, et al., Russ. J. Inorg. Chem. 64, 283 (2019). https://doi.org/10.1134/S0044457X19030231

    Article  CAS  Google Scholar 

  17. V. G. Kuryavyi, A. Y. Ustinov, D. P. Opra, et al., Mater. Lett. 137, 398 (2014). https://doi.org/10.1016/j.matlet.2014.09.007

    Article  CAS  Google Scholar 

  18. W. Luo and A. Taleb, Nanomaterials 11, 365 (2021). https://doi.org/10.3390/nano11020365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. Á. López Zavala, S. A. Lozano Morales, and M. Ávila-Santos, Heliyon 3, E00456 (2017). https://doi.org/10.1016/j.heliyon.2017.e00456

    Article  PubMed  PubMed Central  Google Scholar 

  20. T. L. Simonenko, V. A. Bocharova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 65, 459 (2020). https://doi.org/10.31857/S0044457X20040182

    Article  CAS  Google Scholar 

  21. G. S. Taran, A. E. Baranchikov, O. S. Ivanova, et al., Russ. J. Inorg. Chem. 65, 800 (2020). https://doi.org/10.31857/S0044457X20060239

    Article  CAS  Google Scholar 

  22. F. G. Cherkasov, I. V. Ovchinnikov, A. N. Turanov, et al., Low Temp. Phys. 23, 174 (1997).

    Article  Google Scholar 

  23. S. Wang, A. Guan, J. Wang, et al., Res. Square (2021). https://doi.org/10.21203/rs.3.rs-679600/v1

    Book  Google Scholar 

  24. F. Williams, J. Chem. Educ. 86, 33 (2009). https://doi.org/10.1021/ed086p33

    Article  Google Scholar 

  25. N. Miyamoto, R. Miyamoto, E. Giamello, et al., Res. Chem. Intermed. 44, 4563 (2018). https://doi.org/10.1007/s11164-018-3468-z

    Article  CAS  Google Scholar 

  26. K. A. Muller, Phys. Rev. Lett. 2, 341 (1959). https://doi.org/10.1103/PhysRevLett.2.341

    Article  CAS  Google Scholar 

  27. R. A. Serway, W. Berlinger, K. A. Müller, et al., Phys. Rev. B 16, 4761 (1977). https://doi.org/10.1103/PhysRevB.16.4761

    Article  CAS  Google Scholar 

  28. A. Amorelli, J. C. Evans, and C. C. Rowlands, J. Chem. Soc., Faraday Trans. 85, 4031 (1989). https://doi.org/10.1039/f19898504031

    Article  CAS  Google Scholar 

  29. T. Castner, G. S. Newell, W. C. Holton, et al., J. Chem. Phys. 32, 668 (1960). https://doi.org/10.1063/1.1730779

    Article  CAS  Google Scholar 

  30. D. Cordischi, M. Valigi, D. Gazzoli, et al., J. Solid State Chem. 15, 82 (1975). https://doi.org/10.1016/0022-4596(75)90274-1

    Article  CAS  Google Scholar 

  31. G. Yang, Z. Jiang, H. Shi, et al., J. Mater. Chem. 20, 5301 (2010). https://doi.org/10.1039/c0jm00376j

    Article  CAS  Google Scholar 

  32. E. Serwicka and R. N. Schindler, Z. Naturforsch., A 36, 992 (1981). https://doi.org/10.1515/zna-1981-0910

  33. M. R. Hoffmann, S. T. Martin, W. Choi, et al., Chem. Rev. 95, 69 (1995). https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  34. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005). https://doi.org/10.1038/nmat1310

    Article  CAS  PubMed  Google Scholar 

  35. A. E. Ermakov, M. A. Uimin, A. V. Korolev, et al., Phys. Solid State 59, 469 (2017). https://doi.org/10.1134/S1063783417030106

    Article  CAS  Google Scholar 

  36. N. Smirnova, I. Petrik, V. Vorobets, et al., Nanoscale Res. Lett. 12, 239 (2017). https://doi.org/10.1186/s11671-017-2002-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. A. A. Kelip, I. S. Petrik, G. I. Dovbeshko, et al., Uchen. Zap. Tavrich. Nat. Univ., Ser. Biol. Khim. 26, 261 (2013).

    Google Scholar 

  38. Y. Wang, R. Zhang, J. Li, et al., Nanoscale Res. Lett. 9, 46 (2014). https://doi.org/10.1186/1556-276X-9-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.V. Polyakova for XRF analysis and N.S. Saenko for recording EPR spectra. X-ray diffraction experiments were carried out using equipment of the Shared Facility Center of the Far East Center of Structural Research and Analysis (Institute of Chemistry FEB RAS).

Funding

Synthesis and SEM, EDX, and XRF studies were carried out in the framework of theme no. 0205-2021-0002 of the state assignment of the Institute of Chemistry FEB RAS. UV-Vis experiments were performed with the financial support of the Russian Science Foundation (project no. 19-73-10017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zheleznov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheleznov, V.V., Tkachenko, I.A., Ziatdinov, A.M. et al. Magnetic Photocatalysts Based on Nanocrystalline Manganese-Doped Titanium Dioxide. Russ. J. Inorg. Chem. 68, 95–103 (2023). https://doi.org/10.1134/S0036023622602045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622602045

Keywords:

Navigation