Skip to main content
Log in

Stability, Electronic, and Magnetic Properties of Mo-Doped Gallium Clusters and Their Sensitivity toward Formaldehyde Molecule

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The stability, electronic and magnetic properties of the GanMo (n = 2–10) clusters were investigated using DFT calculations at the TPSS/SDD method. The adsorption of the HCOH molecule over the surface of these clusters has also been evaluated in order to estimate their reactivity. The results reveal that the Ga4Mo and Ga7Mo clusters are found to be more stable than the other clusters, and the Mo atom in the binary clusters was viewed as the most favorable adsorption site for the molecules. The magnetic moments of the GanMo clusters vary from 0 and to 0.75 μB/atom, and their magnetism was mostly localized on Mo atom. The interaction of HCOH with the GanMo clusters is considered as a chemisorption process, with adsorption energies which vary from –24.5 to –49.1 kcal mol–1. The sensitivity of the GanMo clusters toward the HCOH molecule was also calculated, and the results show that these clusters could be employed as efficient nanosensors for the HCOH detection with a short recovery time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. A. J. Cox, J. G. Louderback, and L. A. Bloomfield, Phys. Rev. Lett. 71, 923 (1993). https://doi.org/10.1103/PhysRevLett.71.923

    Article  CAS  PubMed  Google Scholar 

  2. B. Palpant, J. Lermé, E. Cottancin, M. Pellarin, and M. Treilleux, Phys. Rev. B 57, 1963 (1998). https://doi.org/10.1103/PhysRevB.57.1963

    Article  CAS  Google Scholar 

  3. M. G. Bawendi, W.L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, Phys. Rev. Lett. 65, 1623 (1990). https://doi.org/10.1103/PhysRevLett.65.1623

    Article  CAS  PubMed  Google Scholar 

  4. T. S. Zyubina, A. S. Zyubin, Y. A. Dobrovol’skii, V. M. Volokhov, A. V. Arsatov, and Z. G. Bazhanova, Russ. J. Inorg. Chem. 56, 1579 (2011). https://doi.org/10.1134/S003602361111026X

    Article  CAS  Google Scholar 

  5. A. J. Cox, J. G. Louderback, S. E. Apsel, and L. A. Bloomfield, Phys. Rev. B 49, 12295 (1994). https://doi.org/10.1103/PhysRevB.49.12295

    Article  CAS  Google Scholar 

  6. M. B. Knickelbein, Phys. Rev. Lett. 86, 5255 (2001). https://doi.org/10.1103/PhysRevLett.86.5255

    Article  CAS  PubMed  Google Scholar 

  7. A. P. Maltsev and O. P. Charkin, Russ. J. Inorg. Chem. 65, 185 (2020). https://doi.org/10.1134/S0036023621120111

    Article  CAS  Google Scholar 

  8. X. Dong, L. Guo, C. Wen, N. Ren, and S. Niu, Russ. J. Phys. Chem. A 88, 1113 (2014). https://doi.org/10.1134/S003602441407031

    Article  CAS  Google Scholar 

  9. A. P. Maltsev and O. P. Charkin, Russ. J. Inorg. Chem. 66, 1860 (2021). https://doi.org/10.1134/S0036023621120111

    Article  CAS  Google Scholar 

  10. A. Redjel, A. Boudjahem, and M. Bettahar, Partic. Sci. Technol. 36, 410 (2018). https://doi.org/10.1080/02726351.2017.1295294

    Article  CAS  Google Scholar 

  11. C.-H. Tu, A.-Q. Wang, M.-Y. Zheng, X.-D. Wang, and T. Zhang, Appl. Catal. A 297, 40 (2006). https://doi.org/10.1016/j.apcata.2005.08.035

    Article  CAS  Google Scholar 

  12. S. Wang and G. Q. Lu, Appl. Catal. A 169, 271 (1998). https://doi.org/10.1016/S0926-860X(98)00017-9

    Article  CAS  Google Scholar 

  13. M. Higashiwaki and G. H. Jessen, Appl. Phys. Lett. 112, 060401 (2018). https://doi.org/10.1063/1.5017845

    Article  CAS  Google Scholar 

  14. S. Liu, K. Sweatman, S. McDonald, and K. Nogita, Materials 11, 1384 (2018). https://doi.org/10.3390/ma11081384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. R. J. Wehmschulte, R. Peverati, and D. R Powell, Inorg. Chem. 58, 12441 (2019). https://doi.org/10.1021/acs.inorgchem.9b02136

    Article  CAS  PubMed  Google Scholar 

  16. M. R. Lichtenthaler, A. Higelin, A. Kraft, S. Hughes, A. Steffani, D. A. Plattner, J. M. Slattery and I. Krossing, Organometallics 32, 6725 (2013). https://doi.org/10.1021/om4005516

    Article  CAS  Google Scholar 

  17. X. Xie, L. Lin, R.-Y. Liu, Y. F. Jiang, Q. Zhu, and A. Xu, J. Mater. Chem. A 3, 8055 (2015). https://doi.org/10.1039/C5TA00622H

    Article  CAS  Google Scholar 

  18. M. Saito, S. Watanabe, I. Takahara, M. Inaba, and K. Murata, Catal. Lett. 89, 213 (2003). https://doi.org/10.1023/A:102575441313

    Article  CAS  Google Scholar 

  19. Song, Bin, Pei-lin Cao, and Bao-xing Li, Phys. Lett. A 315, 308 (2003). https://doi.org/10.1016/S0375-9601(03)01035-1

    Article  CAS  Google Scholar 

  20. J.-Y. Yi, Phys. Rev. B 61, 7277 (2000). https://doi.org/10.1103/PhysRevB.61.7277

    Article  CAS  Google Scholar 

  21. L. Guo, Comput. Mater. Sci. 45, 951 (2009). https://doi.org/10.1016/j.commatsci.2009.01.001

    Article  CAS  Google Scholar 

  22. E.-L. Li, et al., J. Mol. Struct. (THEOCHEM) 723, 79 (2005). https://doi.org/10.1016/j.theochem.2004.11.029

    Article  CAS  Google Scholar 

  23. B. Song and P.-L. Cao, Phys. Lett. A 328, 364 (2004). https://doi.org/10.1016/J.PHYSLETA.2004.06.032

    Article  CAS  Google Scholar 

  24. B. Song, C.-H. Yao, and P.-L. Cao, Phys. Rev. B 74, 035306 (2006). https://doi.org/10.1103/PhysRevB.74.035306

    Article  CAS  Google Scholar 

  25. J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91,146401 (2003). https://doi.org/10.1103/PhysRevLett.91.14640

    Article  PubMed  Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford CT, 2013).

    Google Scholar 

  27. M. Dolg, U. Weding, H. Stoll, and H. Preuss, J. Chem. Phys. 86, 866 (1987). https://doi.org/10.1063/1.452288

    Article  CAS  Google Scholar 

  28. S. Lu, X. Xu, G. Feng, H. Xu, and W. Zheng, J. Phys. Chem. C 120, 25628 (2006). https://doi.org/10.1021/acs.jpcc.6b08598

    Article  CAS  Google Scholar 

  29. A. Posada-Amirillas and R. Pacheco-Conteras, Int. J. Quantum. Chem. 116, 1006 (2016). https://doi.org/10.1002/qua.25119

    Article  CAS  Google Scholar 

  30. W. Wang, Y. Deng, X. Chen, B. He, Z. Zhao, and H. Wang, Russ. J. Phys. Chem. A 96, 1028 (2022). https://doi.org/10.1134/S0036024422050296

    Article  CAS  Google Scholar 

  31. F. Froben, W. Schulze, and U. Kloss, Chem. Phys. Lett. 99, 500 (1983). https://doi.org/10.1016/0009-2614(83)80183-3

    Article  Google Scholar 

  32. I. Shim, K. Mandix, and K. Gingerich, J. Phys. Chem. 95, 5435 (1991). https://doi.org/10.1021/j100167a018

    Article  CAS  Google Scholar 

  33. K. Das, J. Phys. B 30, 803 (1997). https://doi.org/10.1088/0953-4075/30/4/005

    Article  CAS  Google Scholar 

  34. S. Ping, C. Ping, Z. Ping, L. Yang, and J. Xing, Physica B 406, 3544 (2011). https://doi.org/10.1016/j.physb.2011.06.017

    Article  CAS  Google Scholar 

  35. S. Lee, D. Bylander, and L. Kleinman, Phys. Rev. B 37, 10035 (1988). https://doi.org/10.1103/PhysRevB.37.10035

    Article  CAS  Google Scholar 

  36. A. Sumer, J. Phys. Chem. A. 125, 5201 (2021). https://doi.org/10.1021/acs.jpca.1c03052

    Article  CAS  PubMed  Google Scholar 

  37. J.-G. Han, R.-N. Zhao, and Y. Duan, J. Phys. Chem. A 111, 2148 (2007). https://doi.org/10.1021/jp0661903

    Article  CAS  PubMed  Google Scholar 

  38. K. Balasubramanian, J. Chem. Phys. 117, 4861 (2002). https://doi.org/10.1063/1.1497641

    Article  CAS  Google Scholar 

  39. A. Boudjahem, M. Boulbazine, and M. Chettibi, J. Superconduct. Nov. Magn. 31, 3119 (2018). https://doi.org/10.1007/s10948-018-4579-x

    Article  CAS  Google Scholar 

  40. A. Soltani, A. Boudjahem, and M. Bettahar, Int. J. Quantum. Chem. 116, 346 (2016). https://doi.org/10.1002/qua.25038

    Article  CAS  Google Scholar 

  41. A. Boudjahem, M. Boulbazine, and M. Derdare, J. Superconduct. Nov. Magn. 34, 561 (2021). https://doi.org/10.1007/s10948-020-05720-x

    Article  CAS  Google Scholar 

  42. L. Wu, Y. Ji, D. Dai, T. Chen, D. Yang, Y. Liu, and Z. Wang, Int. J. Hydrogen Energy 45, 31841 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.173

    Article  CAS  Google Scholar 

  43. A.B. Dongil, Nanomaterials 9, 1111 (2019). https://doi.org/10.3390/nano9081111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. A. Boudjahem, M. Boulbazine, and M. Derdare, Struct. Chem. 31, 2341 (2020). https://doi.org/10.1007/s11224-020-01592-y

    Article  CAS  Google Scholar 

  45. M. Boulbazine, A. Boudjahem, S. Chaguetmi, and A. Karaman, Mol. Phys. 118, e1643511 (2020). https://doi.org/10.1080/00268976.2019.1643511

    Article  CAS  Google Scholar 

  46. A. Karaman, A. Boudjahem, M. Boulbazine, and A. Gueid, Struct. Chem. 31, 203 (2020). https://doi.org/10.1007/s11224-019-01391-0

    Article  CAS  Google Scholar 

  47. A. Arab, Mater. Today Commun. 26, 102013 (2021). https://doi.org/10.1016/j.mtcomm.2021.102013

    Article  CAS  Google Scholar 

  48. M. Derdare and A. Boudjahem, Struct. Chem. 32, 2159 (2021). https://doi.org/10.1007/s11224-021-01785-z

    Article  CAS  Google Scholar 

  49. M. Derdare, A. Boudjahem, and N. Cheguib, Mol. Phys. 120, e2070088 (2022). https://doi.org/10.1080/00268976.2022.2070088

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated competently in the work to take overall responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript.

Abdel-Ghani Boudjahem: supervision, project administration, writing-original draft, writing- review and editing; Nedjoua Cheghib: software, methodology; Meryem Derdare: conceptualization, investigation.

Corresponding author

Correspondence to Abdel-Ghani Boudjahem.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedjoua Cheghib, Derdare, M. & Boudjahem, AG. Stability, Electronic, and Magnetic Properties of Mo-Doped Gallium Clusters and Their Sensitivity toward Formaldehyde Molecule. Russ. J. Inorg. Chem. 67 (Suppl 2), S85–S97 (2022). https://doi.org/10.1134/S0036023622602008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622602008

Keywords:

Navigation