Skip to main content
Log in

Microplotter Printing of Hierarchically Organized Planar NiCo2O4 Nanostructures

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The process of forming planar electrodes of the composition NiCo2O4 using high-performance high-resolution microplotter printing technology with functional inks based on nanopowders (average size of the coherent scattering region 14 nm) of a similar composition obtained by the method of programmable chemical coprecipitation of metal hydroxides has been studied. The thermal and spectral characteristics of the intermediate and the target oxide, as well as the features of their crystal structure and microstructure, have been studied using a set of methods of physicochemical analysis. According to X-ray phase analysis and Raman spectroscopy, the resulting coatings are single-phase and are characterized by a cubic spinel-type crystal structure. The results of scanning electron microscopy show that the resulting hierarchically organized coatings are homogeneous and contain no defects in the form of gaps or delaminations. The prospects of the developed technology for the manufacture of modern electrode materials of the composition NiCo2O4 are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. González, E. Goikolea, J. A. Barrena, et al., Renew. Sustain. Energy Rev. 58, 1189 (2016). https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  2. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources 157, 11 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  3. D. Li, Y. Gong, M. Wang, et al., Nano-Micro Lett. 9, 16 (2017). https://doi.org/10.1007/s40820-016-0117-1

    Article  CAS  Google Scholar 

  4. H. Wang, H. S. Casalongue, Y. Liang, et al., J. Am. Chem. Soc. 132, 7472 (2010). https://doi.org/10.1021/ja102267j

    Article  CAS  PubMed  Google Scholar 

  5. C. Wu, X. Lu, L. Peng, et al., Nat. Commun. 4, 2431 (2013). https://doi.org/10.1038/ncomms3431

    Article  CAS  PubMed  Google Scholar 

  6. G. Santhosh, G. P. Nayaka, and A. S. Bhatt, J. Alloys Compd. 899, 163312 (2022). https://doi.org/10.1016/j.jallcom.2021.163312

    Article  CAS  Google Scholar 

  7. Y. Liu, Z. Ma, N. Xin, et al., J. Colloid Interface Sci. 601, 793 (2021). https://doi.org/10.1016/j.jcis.2021.05.095

    Article  CAS  PubMed  Google Scholar 

  8. M. Islam, G. Ali, M. G. Jeong, et al., Int. J. Energy Res. 45, 15036 (2021). https://doi.org/10.1002/er.6782

    Article  CAS  Google Scholar 

  9. S. Hassanpoor and F. Aghely, RSC Adv. 10, 35235 (2020). https://doi.org/10.1039/d0ra07620a

  10. S. Chen, D. Huang, D. Liu, et al., Appl. Catal. B: Environ. 291, 120065 (2021). https://doi.org/10.1016/j.apcatb.2021.120065

    Article  CAS  Google Scholar 

  11. M. J. Pang, S. Jiang, G. H. Long, et al., RSC Adv. 6, 67839 (2016). https://doi.org/10.1039/C6RA14099H

    Article  CAS  Google Scholar 

  12. H. Guo, L. Liu, T. Li, et al., Nanoscale 6, 5491 (2014). https://doi.org/10.1039/C4NR00930D

    Article  CAS  PubMed  Google Scholar 

  13. C. Zheng, C. Cao, R. Chang, et al., Phys. Chem. Chem. Phys. 18, 6268 (2016). https://doi.org/10.1039/C5CP07997G

    Article  CAS  PubMed  Google Scholar 

  14. J. Acharya, T. H. Ko, M. -K. Seo, et al., J. Colloid Interface Sci. 564, 65 (2020). https://doi.org/10.1016/j.jcis.2019.12.098

    Article  CAS  PubMed  Google Scholar 

  15. X. Ma, Z. Wang, Z. Wang, et al., Nanotechnology 33, 245604 (2022). https://doi.org/10.1088/1361-6528/ac5ca3

    Article  Google Scholar 

  16. S. He, J. Chai, S. Lu, et al., Nanoscale 12, 6195 (2020). https://doi.org/10.1039/C9NR10899H

    Article  CAS  PubMed  Google Scholar 

  17. A. S. Khan, L. Pan, A. Farid, et al., Nanoscale 13, 11943 (2021). https://doi.org/10.1039/D1NR00949D

    Article  CAS  PubMed  Google Scholar 

  18. M. Nazim, J. H. Kim, H.-Y. Lee, et al., Langmuir 37, 12929 (2021). https://doi.org/10.1021/acs.langmuir.1c01999

    Article  CAS  PubMed  Google Scholar 

  19. Z. Cui, S.-A. He, Q. Liu, et al., Dalton Trans. 49, 6876 (2020). https://doi.org/10.1039/C9DT04936C

    Article  CAS  PubMed  Google Scholar 

  20. T. L. Simonenko, N. P. Simonenko, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 64, 1475 (2019). https://doi.org/10.1134/S0036023619120167

    Article  CAS  Google Scholar 

  21. T. L. Simonenko, V. M. Ivanova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 64, 1753 (2019). https://doi.org/10.1134/S0036023619140080

    Article  CAS  Google Scholar 

  22. N. P. Simonenko, T. L. Simonenko, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 64, 1758 (2019). https://doi.org/10.1134/S0036023619140092

    Article  CAS  Google Scholar 

  23. R. K. Joshi and J. J. Schneider, Chem. Soc. Rev. 41, 5285 (2012). https://doi.org/10.1039/c2cs35089k

    Article  CAS  PubMed  Google Scholar 

  24. Z. Yu, L. Tetard, L. Zhai, et al., Energy Environ. Sci. 8, 702 (2015). https://doi.org/10.1039/C4EE03229B

    Article  CAS  Google Scholar 

  25. T. L. Simonenko, V. A. Bocharova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 65, 459 (2020). https://doi.org/10.1134/S003602362004018X

    Article  CAS  Google Scholar 

  26. W. Liu, C. Lu, X. Wang, et al., ACS Nano 9, 1528 (2015). https://doi.org/10.1021/nn5060442

    Article  CAS  PubMed  Google Scholar 

  27. Z. Wu, K. Parvez, X. Feng, et al., Nat. Commun. 4, 2487 (2013). https://doi.org/10.1038/ncomms3487

    Article  CAS  PubMed  Google Scholar 

  28. M. Beidaghi and C. Wang, Adv. Funct. Mater. 22, 4501 (2012). https://doi.org/10.1002/adfm.201201292

    Article  CAS  Google Scholar 

  29. J. Cai, C. Lv, and A. Watanabe, Nano Energy 30, 790 (2016). https://doi.org/10.1016/j.nanoen.2016.09.017

    Article  CAS  Google Scholar 

  30. Y.-F. Wang, Shi-Yi, and S.-W. Bian, Mater. Today Proc. 16, 1448 (2019). https://doi.org/10.1016/j.matpr.2019.05.322

    Article  CAS  Google Scholar 

  31. R. -Z. Li, R. Peng, K. D. Kihm, et al., Energy Environ. Sci. 9, 1458 (2016). https://doi.org/10.1039/C5EE03637B

    Article  CAS  Google Scholar 

  32. C. Zhu, T. Liu, F. Qian, et al., Nano Lett. 16, 3448 (2016). https://doi.org/10.1021/acs.nanolett.5b04965

    Article  CAS  PubMed  Google Scholar 

  33. P. Sundriyal and S. Bhattacharya, ACS Appl. Energy Mater. 2, 1876 (2019). https://doi.org/10.1021/acsaem.8b02006

    Article  CAS  Google Scholar 

  34. T. L. Simonenko, N. P. Simonenko, P. Y. Gorobtsov, et al., Russ. J. Inorg. Chem. 66, 1416 (2021). https://doi.org/10.1134/S0036023621090138

    Article  CAS  Google Scholar 

  35. T. L. Simonenko, N. P. Simonenko, P. Y. Gorobtsov, et al., J. Alloys Compd. 832, 154957 (2020). https://doi.org/10.1016/j.jallcom.2020.154957

    Article  CAS  Google Scholar 

  36. T. L. Simonenko, N. P. Simonenko, P. Y. Gorobtsov, et al., J. Colloid Interface Sci. 588, 209 (2021). https://doi.org/10.1016/j.jcis.2020.12.052

    Article  CAS  PubMed  Google Scholar 

  37. N. P. Simonenko, N. S. Kadyrov, T. L. Simonenko, et al., Russ. J. Inorg. Chem. 66, 1283 (2021). https://doi.org/10.1134/S0036023621090126

    Article  CAS  Google Scholar 

  38. A. S. Mokrushin, T. L. Simonenko, N. P. Simonenko, et al., Appl. Surf. Sci. 578, 151984 (2022). https://doi.org/10.1016/j.apsusc.2021.151984

    Article  CAS  Google Scholar 

  39. T. L. Simonenko, N. P. Simonenko, P. Y. Gorobtsov, et al., Ceram. Int. 48, 22401 (2022). https://doi.org/10.1016/j.ceramint.2022.04.252

    Article  CAS  Google Scholar 

  40. S. Bae, H. Kim, Y. Lee, et al., Nat. Nanotechnol. 5, 574 (2010). https://doi.org/10.1038/nnano.2010.132

    Article  CAS  PubMed  Google Scholar 

  41. C. J. Zhang, M. P. Kremer, A. Seral-Ascaso, et al., Adv. Funct. Mater. 28, 1705506 (2018). https://doi.org/10.1002/adfm.201705506

    Article  CAS  Google Scholar 

  42. K. Jost, D. Stenger, C. R. Perez, et al., Energy Environ. Sci. 6, 2698 (2013). https://doi.org/10.1039/c3ee40515j

    Article  CAS  Google Scholar 

  43. N. P. Simonenko, N. A. Fisenko, F. S. Fedorov, et al., Sensors 22, 3473 (2022). https://doi.org/10.3390/s22093473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Z. Zang, X. Tang, X. Liu, et al., Appl. Opt. 53, 7868 (2014). https://doi.org/10.1364/AO.53.007868

    Article  PubMed  Google Scholar 

  45. P. Sobolewski, A. Goszczynska, M. Aleksandrzak, et al., Beilstein J. Nanotechnol. 8, 1508 (2017). https://doi.org/10.3762/bjnano.8.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. R. Abargues, P. J. Rodriguez-Canto, S. Albert, et al., J. Mater. Chem. C 2, 908 (2014). https://doi.org/10.1039/C3TC31596G

    Article  CAS  Google Scholar 

  47. M. S. Vidhya, G. Ravi, R. Yuvakkumar, et al., RSC Adv. 10, 19410 (2020). https://doi.org/10.1039/D0RA01890B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. G. He, L. Wang, H. Chen, et al., Mater. Lett. 98, 164 (2013). https://doi.org/10.1016/j.matlet.2013.02.035

    Article  CAS  Google Scholar 

  49. X. Su, C. Gao, M. Cheng, et al., RSC Adv. 6, 97172 (2016). https://doi.org/10.1039/C6RA20361B

    Article  CAS  Google Scholar 

  50. V. G. Hadjiev, M. N. Iliev, and I. V. Vergilov, J. Phys. C: Solid State Phys. 21, L199 (1988). https://doi.org/10.1088/0022-3719/21/7/007

    Article  Google Scholar 

  51. C. F. Windisch, G. J. Exarhos, and R. R. Owings, J. Appl. Phys. 95, 5435 (2004). https://doi.org/10.1063/1.1699505

    Article  CAS  Google Scholar 

  52. E. Umeshbabu, G. Rajeshkhanna, P. Justin, et al., Mater. Chem. Phys. 165, 235 (2015). https://doi.org/10.1016/j.matchemphys.2015.09.023

    Article  CAS  Google Scholar 

  53. D. Li, Y. Gong, Y. Zhang, et al., Sci. Rep. 5, 12903 (2015). https://doi.org/10.1038/srep12903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. D. Li, Y. Gong, M. Wang, et al., Nano-Micro Lett. 9, 1 (2017). https://doi.org/10.1007/s40820-016-0117-1

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Council for Grants of the President of the Russian Federation for the state support of young Russian scientists (grant MK-1749.2022.1.3) (in terms of the synthesis and analysis of nanopowders using methods of simultaneous thermal analysis and IR spectroscopy), as well as by the Ministry of Science and Higher Education of the Russian Federation (state contract No. 075-03-2022-107, project identifier 0714-2021-0007) (in part of coating formation by using microplotter printing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Simonenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, T.L., Simonenko, N.P., Simonenko, E.P. et al. Microplotter Printing of Hierarchically Organized Planar NiCo2O4 Nanostructures. Russ. J. Inorg. Chem. 67, 1848–1854 (2022). https://doi.org/10.1134/S0036023622601234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622601234

Keywords:

Navigation