Skip to main content
Log in

High Dielectric Permittivity and Low Transition Temperature of (1 – x)CaTiO3xFeTiO3 Inorganic Composites (x = 0.0 to 1.0)

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we improved the dielectric properties of CaTiO3 by adding ilmenite (FeTiO3). For this, we synthesized (1 – x)CaTiO3xFeTiO3 for a large composition from x = 0.0 to 1.0 by using the conventionnel solid-state method. Several characterization techniques were used to study the structural and dielectric properties of these composites. Following the X-ray diffraction results we confirmed that pure CaTiO3 (CT) and FeTiO3 (FT) crystalize in orthorhombic phase with Pbnm and Pmmm space groups, respectively; while for x = 0.1 to 0.9 we have succeeded to synthesize these composites with the phase mixture of two Pbnm and Pmmm orthorhombic phase, without presence of any secondary phase. The Raman spectroscopy results confirm these phases mixture (for x = 0.1 to 0.9) and the pure CT and FT bands formation. The SEM micrographs of CT sample show spherical grains while with the increase of FT content, the elongated grain shape appeared. On the other hand, the grain size is minimal at x = 0.2 and 0.5 of x content and the density is improved in these samples. The dielectric measurements of these composites were investigated as function of frequency (from 20 Hz to 2 MHz) and temperature (from room temperature to 550°C). The results confirmed the stability in dielectric permittivity of CT at this range of temperature, while with adding FT we obtained a phase transition which shifted to the lower temperature with the increase of x content. In addition, the dielectric permittivity increased with the increase of x rate and reached a colossal value for the sample at x = 0.5, which confirmed the improvement of dielectric properties of CT. The frequency dependence of dielectric permittivity showed a ferroelectric behavior for all the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 6.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. I. Get’man, S. N. Loboda, and M. A. Sidorkina, Russ. J. Inorg. Chem. 54, 346 (2009). https://doi.org/10.1134/S0036023609030024

    Article  Google Scholar 

  2. K. V. Ivanov, A. V. Noskov, O. V. Alekseeva, et al., Russ. J. Inorg. Chem. 66, 490 (2021). https://doi.org/10.1134/S0036023621040136

    Article  CAS  Google Scholar 

  3. T. Liu, X.-Z. Zhao, and W. Chen, J. Am. Ceram. Soc. 89, 1153 (2006). https://doi.org/10.1111/j.1551-2916.2005.00894.x

    Article  CAS  Google Scholar 

  4. H. X. Liu, H. T. Yu, and Z. Q. Tian, J. Am. Ceram. Soc. 88, 453 (2005). https://doi.org/10.1111/j.1551-2916.2005.00064.x

    Article  CAS  Google Scholar 

  5. C. L. Huang, H. L. Chen, and C. C. Wu, Mater. Res. Bull. 36, 1645 (2001). https://doi.org/10.1016/S0025-5408(01)00652-3

    Article  CAS  Google Scholar 

  6. K. Ezaki, Y. Baba, H. Takahashi, and K. Shibata, J. Appl. Phys. 32, 4319 (1993). https://doi.org/10.1143/JJAP.32.4319

    Article  CAS  Google Scholar 

  7. A. E. Ringwood, S. E. Kesson, K. D. Reeve, et al., in Radioactive Waste Forms for the Future (Elsevier, Amsterdam, 1988).

    Google Scholar 

  8. C. J. Ball, B. D. Begg, D. J. Cookson, et al., J. Solid State Chem. 139, 238 (1998). https://doi.org/10.1006/jssc.1998.7836

    Article  CAS  Google Scholar 

  9. Y. X. Wang, W. L. Zhong, C. L. Wang, and P. L. Zhang, Solid State Commun. 117, 461 (2001). https://doi.org/10.1016/S0038-1098(00)00510-X

    Article  CAS  Google Scholar 

  10. S. I. Shornikov, Russ. J. Phys. Chem. 93, 1428 (2019). https://doi.org/10.1134/S0036024419080284

    Article  CAS  Google Scholar 

  11. H. F. Kay and P. C. Bailey, Acta Crystallogr. 10, 219 (1957). https://doi.org/10.1107/S0365110X57000675

    Article  CAS  Google Scholar 

  12. S. A. T. Redfern. J. Phys, Condens. Matter. 8, 8267 (1996). https://doi.org/10.1088/0953-8984/8/43/019

    Article  CAS  Google Scholar 

  13. T. Vogt and W. W. Schmahl, Europhys. Lett. 24, 281 (1993). https://doi.org/10.1209/0295-5075/24/4/008

    Article  CAS  Google Scholar 

  14. B. J. Kennedy, C. J. Howard, and B. C. Chakoumakos, J. Phys.: Condens. Matter 11, 1479 (1999). https://doi.org/10.1088/0953-8984/11/6/012

    Article  CAS  Google Scholar 

  15. R. Ranjan, D. Pandey, W. Schuddinck, O. Richard, P. D. Meulenaere, J. V. Landuyt, and G. V. Tendeloo, J. Solid State Chem. 162, 20 (2001).

    Article  CAS  Google Scholar 

  16. Z. Z. Yang, H. Yamada, and G. R., Miller, J. Mater. Sci. 21, 405 (1986). https://doi.org/10.1007/BF01145501

    Article  CAS  Google Scholar 

  17. A.K Dubey, P.K Mallik, S. Kundu, and B. Basu, J. Eur. Cer. Soc. 33, 3445 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.07.012

    Article  CAS  Google Scholar 

  18. R. C. Kell, A. C. Greenham, and G. C. E. Olds, J. Am. Ceram. Soc. 56, 352 (1973). https://doi.org/10.1111/j.1151-2916.1973.tb12684.x

    Article  CAS  Google Scholar 

  19. X. Wu, G. Steinle-Neumann, O. Narygina, I. Kantor, C. McCammon, V. Prakapenka, V. Swamy, and L. Dubrovinsky, Phys. Rev. Lett. 103, 065503 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. D. Nishio-Hamane, M. Zhang, T. Agi, and Y. Ma, Am. Mineral. 97, 568 (2012). https://doi.org/10.2138/am.2012.3973

    Article  CAS  Google Scholar 

  21. P.Srinivas, A. Sendil Kumar, V. R. Reddy, and Anil K. Bhatnagar, Adv. Mater. Res. 1051, 34 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1051.34

    Article  CAS  Google Scholar 

  22. Fujii, M. Kayano, Y. Takada, et al., Solid State Ionics 172, 289 (2004). https://doi.org/10.1016/j.ssi.2004.02.051

    Article  CAS  Google Scholar 

  23. F. Zhou, S. Kotru, and R. K. Pandey, Thin Solid Films 408, 33 (2002). https://doi.org/10.1016/S0040-6090(02)00075-5

    Article  CAS  Google Scholar 

  24. S. Kimura and A. Muan, Am. Mineral. 56, 1333, (1971).

    Google Scholar 

  25. S. Kimura and A. Muan, Am. Mineral. 56, 1347, (1971).

    Google Scholar 

  26. K. Leinenweber, J. Linton, A. Navrotsky, et al., Parisc. Phys. Chem. Mineral. 22, 251 (1995). https://doi.org/10.1007/BF00202258

    Article  CAS  Google Scholar 

  27. N. Gouitaa, T. Lamcharfi, M. F. Bouayad, et al., Asian J. Chem. 10, 2143 (2017). https://doi.org/10.14233/ajchem.2017.20653

    Article  CAS  Google Scholar 

  28. M. Lozano-Sánchez, S. Obregón, L. A. Díaz-Torres, et al., J. Mol. Catal, A: Chem. 410, 19 (2015). https://doi.org/10.1016/j.molcata.2015.09.005

    Article  CAS  Google Scholar 

  29. T. Xian, H. Yang, and Y. S. Huo, Phys. Scr. 89, 115801 (2014). https://doi.org/10.1088/0031-8949/89/11/115801

    Article  CAS  Google Scholar 

  30. X. Tang and K. Hu, J. Mater. Sci. 41, 8025 (2006). https://doi.org/10.1007/s10853-006-0908-8

    Article  CAS  Google Scholar 

  31. M. N. Iliev, M. V. Abrashev, H. G. Lee, et al., Phys. Rev. B 57, 2872 (1998). https://doi.org/10.1103/PhysRevB.57.2872

    Article  CAS  Google Scholar 

  32. F. Genet, S. Loridant, C. Ritter, and G. Lucazeau, J. Phys. Chem. Solids 60, 2009 (1999). https://doi.org/10.1016/s0022-3697(99)00031-1

    Article  CAS  Google Scholar 

  33. P. McMillan and N. Ross, Phys. Chem. Miner. 16 (1988) 21–28. https://doi.org/10.1007/BF00201326

    Article  CAS  Google Scholar 

  34. R. F. Gonçalves, A. R. F. Lima, M. J. Godinho, et al., Ceram. Int. 41, 12841 (2015). https://doi.org/10.1016/j.ceramint.2015.06.121

    Article  CAS  Google Scholar 

  35. M. Olivares, M. C. Zuluaga, L. A. Ortega, et al., J. Raman Spectrosc. 41, 1543 (2010). https://doi.org/10.1002/jrs.2748

    Article  CAS  Google Scholar 

  36. L. Nodari, E. Marcuz, L. Maritan, et al., J. Eur. Ceramic Soc. 27, 4665 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.03.031

    Article  CAS  Google Scholar 

  37. Y. K. Sharma, M. Kharkwal, S. Uma, and R. Nagarajan, Polyhedron 28, 579 (2009). https://doi.org/10.1016/j.poly.2008.11.056

    Article  CAS  Google Scholar 

  38. A. T. Raghavender, N. H. Hong, K. J. Lee, et al., J. Magn. Magn. Mater. 331, 129 (2013). https://doi.org/10.1016/j.jmmm.2012.11.028

    Article  CAS  Google Scholar 

  39. N. Gouitaa, T. Lamcharfi, M. Bouayad, et al., J. Mater. Sci.: Mater. Electron. https://doi.org/10.1007/s10854-018-8666-3

  40. K. Samuvel, K. Ramachandran, Optik 127, 1781 (2016), https://doi.org/10.1016/j.ijleo.2015.10.240

    Article  CAS  Google Scholar 

  41. Wu Yu-Chuan, Sea-Fue Wang, and Shin-Hong Chen, J. Am. Ceram. Soc. 92, 2099 (2099). https://doi.org/10.1111/j.1551-2916.2009.03165.x

  42. A. Rani, J. Kolte, S. S. Vadla, and P. Gopalan, Ceram. Int. 42, 8010 (2016). https://doi.org/10.1016/j.ceramint.2016.01.205

    Article  CAS  Google Scholar 

  43. P. Lunkenheimer, R. Fichtl, S. G. Ebbinghaus, and A. Loidl, Phys. Rev. B 70, 172102 (2004). https://doi.org/10.1103/PhysRevB.70.172102

    Article  CAS  Google Scholar 

  44. P. Lunkenheimer, V. Bobnar, A. V. Pronin, et al., Phys. Rev. B 66, 052105 (2002). https://doi.org/10.1103/PhysRevB.66.052105

    Article  CAS  Google Scholar 

  45. F. Bourguiba, Ah. Dhahri, T. Tahri, et al., J. Alloys Comp. 686, 675 (2016). https://doi.org/10.1016/j.jallcom.2016.06.071

    Article  CAS  Google Scholar 

  46. Joby E. Joy, E. Atamanik, R. Mani, et al., J. Gopalakrishnan, Solid State 12, 1970 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.08

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is done in Signals, Systems and Components Laboratory (LSSC), at University Sidi Mohamed Ben Abdellah with the collaboration with Materials and Archaeomaterials Spectrometry Laboratory (LASMAR), research unit associated with CNRST (URAC11) at Moulay-Ismail University. Special thanks to professor Taj-dine Lamcharfi for his help to succeed this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gouitaa Najwa.

Ethics declarations

The authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouitaa Najwa, Zahra, A.F., Taj-Dine, L. et al. High Dielectric Permittivity and Low Transition Temperature of (1 – x)CaTiO3xFeTiO3 Inorganic Composites (x = 0.0 to 1.0). Russ. J. Inorg. Chem. 67, 1868–1879 (2022). https://doi.org/10.1134/S0036023622100588

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622100588

Keywords:

Navigation