Skip to main content
Log in

Solid Solution with Spinel Structure in the System MgO–NiO–Ga2O3

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Samples of the initial composition Mg1 – xNixGa2O4 (0 ≤ х ≤ 1, step х = 0.1) synthesized by the gel combustion method and annealed at 1000°C have been studied by X-ray powder diffraction and IR spectroscopy. For homogeneous samples of (Mg,Ni)Ga2O4 with a spinel structure, the gallium nonstoichiometry has been determined by inductively coupled plasma atomic emission spectrometry. Within the framework of the MgO–NiO–Ga2O3 system, the boundary of the homogeneity region of spinel (Mg,Ni)Ga2O4, which is in equilibrium with halite (Mg,Ni)O, has been outlined. An analysis of the diffuse reflectance spectra of (Mg,Ni)Ga2O4 in the range of 350–900 nm revealed intense absorption bands from Ni2+ in octahedral positions and showed an increase in their intensity with an increase in the nickel content in the spinel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. M. Karasev, O. V. Stepanenko, K. A. Rumyantsev, et al., Biochemistry 84, 32 (2019). https://doi.org/10.1134/S0006297919140037

    CAS  Google Scholar 

  2. M. M. Karasev, O. V. Stepanenko, K. A Rumyantsev, et al., Usp. Biol. Khim. 59, 67 (2019).

    Google Scholar 

  3. K. D. Piatkevich, F. Subach, and V. V. Verkhusha, Chem. Soc. Rev. 42, 3441 (2013). https://doi.org/10.1039/c3cs35458j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D. M. Shcherbakova, M. Baloban, and V. V. Verkhusha, Curr. Opin. Chem. Biol. 27, 52 (2015). https://doi.org/10.1016/j.cbpa.2015.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. E. V. Khaydukov, V. A. Semchishen, V. N. Seminogov, et al., Biomed. Opt. Express 5, 1952 (2014). https://doi.org/10.1364/BOE.5.001952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. M. Smith, M. C. Mancini, and S. Nie, Nat. Nanotechnol. 4, 710 (2009). https://doi.org/10.1038/nnano.2009.326

    Article  CAS  Google Scholar 

  7. K. Welsher, Z. Liu, and S. P. Sherlock, et al., Nat. Nanotechnol. 4, 773 (2009). https://doi.org/10.1038/nnano.2009.294

    Article  CAS  Google Scholar 

  8. T. Suzuki, G. S. Murugan, and Y. Ohishi, J. Lumin. 113, 265 (2005). https://doi.org/10.1016/j.jlumin.2004.10.022

    Article  CAS  Google Scholar 

  9. L. P. Sosman, R. J. M. Fonseca, TavaresJr. A. Dias, et al., Cerâmica 62, 200 (2006). https://doi.org/10.1590/S0366-69132006000200013

  10. T. Suzuki, Y. Arai, and Y. Ohishi, J. Lumin. 128, 603 (2008). https://doi.org/10.1016/j.jlumin.2007.10.010

    Article  CAS  Google Scholar 

  11. T. Suzuki, M. Hughes, and Y. Ohishi, J. Lumin. 130, 121 (2010). https://doi.org/10.1016/j.jlumin.2009.07.029

    Article  CAS  Google Scholar 

  12. L. Andreici, M. G. Brik, and N. M. Avram, Roman. Rep. Phys. 63, 1048 (2011).

    CAS  Google Scholar 

  13. G. K. B. Costa, L. P. Sosman, A. Lopez, et al., J. Alloys. Compd. 534, 110 (2012). https://doi.org/10.1016/j.jallcom.2012.04.039

    Article  CAS  Google Scholar 

  14. J. Shi and K.-D. Becker, Solid State Ionics 192, 49 (2011). https://doi.org/10.1016/j.ssi.2010.07.022

    Article  CAS  Google Scholar 

  15. S.-X. Zhou, X.-J. Lv, C. Zhang, et al., ChemPlusChem 80, 223 (2015). https://doi.org/10.1002/cplu.201402279

    Article  CAS  Google Scholar 

  16. A. C. Otero and M. C. Trobajo-Fernandes, Phys. Status Solidi A 92, 443 (1985). https://doi.org/10.1002/pssa.2210920213

    Article  Google Scholar 

  17. Z. Galazka, D. Klimm, K. Irmscher, et al., Phys. Status Solidi A 212, 1455 (2015). https://doi.org/10.1002/pssa.201431835

    Article  CAS  Google Scholar 

  18. M. Zinkevich, S. Geupel, and F. Aldinger, J. Alloys. Compd. 293, 154 (2005). https://doi.org/10.1016/j.jallcom.2004.09.069

    Article  Google Scholar 

  19. G. D. Nipan, M. N. Smirnova, D. Y. Kornilov, et al., Russ. J. Inorg. Chem. 65, 573 (2020). https://doi.org/10.1134/S0036023620040130

    Article  CAS  Google Scholar 

  20. G. D. Nipan, M. N. Smirnova, M. A. Kop’eva, et al., Russ. J. Inorg. Chem. 64, 1304 (2019). https://doi.org/10.1134/S0036023619100103

  21. A. Varma, A. S. Mukasyan, A. S. Rogachev, et al., Chem. Rev. 116, 14493 (2016). https://doi.org/10.1021/acs.chemrev.6b00279

    Article  CAS  Google Scholar 

  22. E. Carlos, R. Martins, E. Fortunato, et al., Chem.-Eur. J. 26, 9099 (2020). https://doi.org/10.1002/chem.202000678

    Article  CAS  Google Scholar 

  23. P. Kubelka and F. A. Munk, Z. Technol. Phys. 12, 593 (1931).

    Google Scholar 

  24. G. Pilania, V. Kocevski, J. A. Valdez, et al., Commun. Mater. 1, 84 (2020). https://doi.org/10.1038/s43246-020-00082-2

  25. S. Mukhopadhyay and K. T. Jakob, J. Phase Equlib. 16, 243 (1995). https://doi.org/10.1007/BF02667309

    Article  CAS  Google Scholar 

  26. X. L. Duan, D. R. Yuan, X. F. Cheng, et al., J. Alloys. Compd. 439, 355 (2007). https://doi.org/10.1016/j.jallcom.2006.08.235

    Article  CAS  Google Scholar 

  27. S. Wu, J. Xue, R. Wang, et al., J. Alloys. Compd. 585, 542 (2014). https://doi.org/10.1016/j.jallcom.2013.09.176

    Article  CAS  Google Scholar 

  28. N. Li, J. Liu, X. Duan, et al., J. Nanopart. Res. 19, 285 (2017). https://doi.org/10.1007/s11051-017-3985-5

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the Center for Collective Use of the Physical Methods of Investigation of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

The work was supported by the Ministry of Education and Science of the Russian Federation within the framework of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Smirnova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, M.N., Kop’eva, M.A., Nipan, G.D. et al. Solid Solution with Spinel Structure in the System MgO–NiO–Ga2O3. Russ. J. Inorg. Chem. 67, 978–983 (2022). https://doi.org/10.1134/S0036023622070221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622070221

Keywords:

Navigation