Skip to main content
Log in

Chemical Bond Nature and Structure of X-ray Photoelectron Spectrum of PaO2

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The relativistic method of discrete variation has been used to calculate the density of states and the X-ray photoelectron spectroscopy spectrum of valence electrons in the range of electron binding energies from 0 to ~50 eV in PaO2. A scheme of molecular orbitals has been constructed. Significant covalence effects are observed in PaO2, which are associated with the overlap of not only Pa6d atomic orbitals but also Pa6p and Pa5f atomic orbitals with oxygen orbitals. It has been found that the electrons of the inner valence molecular orbitals weaken the chemical bond formed by the electrons of the outer valence molecular orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. The Chemistry of Actinide Elements, vol. 1, Ed. by J. J. Katz, G. T. Seaborg, and L. R. Morss (Chapman and Hall, London, New York, 1986).

    Google Scholar 

  2. L. E. J. Roberts and A. J. Walter, Physico-Chimie Du Protactinium, Ed. by G. Bouissieres and R. Mixart (Centre National de la Recherche Scientifique, Paris, 1966).

    Google Scholar 

  3. P. A. Sellers, S. Fried, R. E. Elson, and W. H. Zachariasen, J. Am. Chem. Soc. 76, 5935 (1954). https://doi.org/10.1021/ja01652a011

    Article  CAS  Google Scholar 

  4. M. O. Krause, R. G. Haire, O. Keski-Rahkonen, and J. R. Peterson, J. Electron Spectrosc. Relat. Phenom. 47, 215 (1988). https://doi.org/10.1016/0368-2048(88)85013-8

    Article  CAS  Google Scholar 

  5. I. D. Prodan, G. E. Scuseria, and R. L. Martin, Phys. Rev. 76, 033101. https://doi.org/10.1103/PhysRevB.76.033101

  6. X.-D. Wen, R. L. Martin, T. M. Henderson, and G. E. Scuseria, Chem. Rev. 113, 1063 (2013). https://doi.org/10.1021/cr300374y

    Article  CAS  PubMed  Google Scholar 

  7. A. Y. Teterin, M. V. Ryzhkov, Y. A. Teterin, et al., Radiochemistry 51, 560 (2009). https://doi.org/10.1134/S1066362209060022

    Article  CAS  Google Scholar 

  8. K. I. Maslakov, Yu. A. Teterin, M. V. Ryzhkov, et al., Int. J. Quantum Chem. 119, e26040 (2019). https://doi.org/10.1002/qua.26040

    Article  CAS  Google Scholar 

  9. Yu. A. Teterin, A. Yu. Teterin, K. E. Ivanov, et al., Phys. Rev. B 89, 035102 (2014). https://doi.org/10.1103/PhysRevB.89.035102

    Article  CAS  Google Scholar 

  10. Yu. A. Teterin, K. I. Maslakov, A. Yu. Teterin, et al., Phys. Rev. B 87, 245108 (2013). https://doi.org/10.1103/PhysRevB.87.245108

    Article  CAS  Google Scholar 

  11. Y. A. Teterin, K. I. Maslakov, M. V. Ryzhkov, et al., Nucl. Technol. Radiat. Prot. 30, 83 (2015). https://doi.org/10.2298/NTRP1502083T

    Article  Google Scholar 

  12. A. E. Putkov, Y. A. Teterin, M. V. Ryzhkov, et al., Radiochemistry 63, 401 (2021). https://doi.org/10.1134/S1066362221040020

    Article  CAS  Google Scholar 

  13. A. E. Putkov, Y. A. Teterin, M. V. Ryzhkov, et al., Russ. J. Phys. Chem. A 95, 1169 (2021). https://doi.org/10.1134/S0036024421060212

    Article  CAS  Google Scholar 

  14. B. W. Veal, D. J. Lam, H. Diamond, and H. R. Hoekstra, Phys. Rev. 15, 2929 (1977). https://doi.org/10.1103/PhysRevB.15.2929

    Article  CAS  Google Scholar 

  15. A. Rosen and D. E. Ellis, J. Chem. Phys. 62, 3039 (1975). https://doi.org/10.1063/1.430892

    Article  CAS  Google Scholar 

  16. D. E. Ellis and G. L. Goodman, Int. J. Quantum Chem. 25, 185 (1984). https://doi.org/10.1002/qua.560250115

    Article  CAS  Google Scholar 

  17. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976). https://doi.org/10.1103/PhysRevB.13.4274

    Article  CAS  Google Scholar 

  18. Yu. A. Teterin and S. G. Gagarin, Russ. Chem. Rev. 65, 825 (1996).

    Article  Google Scholar 

  19. Yu. A. Teterin and A. Yu. Teterin, Russ. Chem. Rev. 73, 541 (2004).

    Article  CAS  Google Scholar 

  20. P. J. Kelly, M. S. Brooks, and R. Allen, J. Phys. 40, 184 (1979). https://doi.org/10.1051/jphyscol:1979458

    Article  Google Scholar 

  21. V. A. Gubanov, A. Rosen, and D. E. Ellis, J. Phys. Chem. Solids 40, 17 (1979). https://doi.org/10.1016/0022-3697(79)90090-8

    Article  CAS  Google Scholar 

  22. K. I. Maslakov, Yu. A. Teterin, M. V. Ryzhkov, et al., Phys. Chem. Chem. Phys. 20, 16167 (2018). https://doi.org/10.1039/C8CP01442F

    Article  CAS  PubMed  Google Scholar 

  23. V. G. Yarzhemsky, A. Yu. Teterin, Yu. A. Teterin, and M. B. Trzhaskovskaya, Nucl. Technol. Radiat. Prot. 27, 103 (2012). https://doi.org/10.2298/NTRP1202103Y

    Article  CAS  Google Scholar 

  24. K. N. Huang, M. Aoyagi, M. N. Chen, B. Crasemann, H. Mark, Atom. Data Nucl. Data Tables 18, 243 (1976). https://doi.org/10.1016/0092-640X(76)90027-9

    Article  CAS  Google Scholar 

  25. R. S. Mulliken, Ann. Rev. Phys. Chem. 29, 1 (1978). https://doi.org/10.1146/annurev.pc.29.100178.000245

    Article  CAS  Google Scholar 

  26. M. B. Trzhaskovskaya and V. G. Yarzhemsky, Atom. Data Nucl. Data 119, 99 (2018). https://doi.org/10.1016/j.adt.2017.04.003

    Article  CAS  Google Scholar 

  27. K. D. Sevier, Atomic Data and Nuclear Data Tables 24, 323 (1979). https://doi.org/10.1016/0092-640X(79)90012-3

    Article  CAS  Google Scholar 

  28. A. E. Putkov, K. I. Maslakov, Yu. A. Teterin, et al., Russ. J. Struct. Chem. 62, 1846 (2021). https://doi.org/10.1134/S0022476621120040

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Russian Foundation for Basic Research, grant no. 20-03-00333.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Teterin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teterin, Y.A., Ryzhkov, M.V., Putkov, A.E. et al. Chemical Bond Nature and Structure of X-ray Photoelectron Spectrum of PaO2. Russ. J. Inorg. Chem. 67, 881–887 (2022). https://doi.org/10.1134/S0036023622060274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622060274

Keywords:

Navigation