Skip to main content
Log in

Synthesis and Thermal Properties of Tetramethylammonium and Tetraethylammonium Salts of Phosphotungstate Metalates with Some 3d Elements

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We present the results of the synthesis, investigation of thermal decomposition, and identification of thermolysis products of tetramethylammonium and tetraethylammonium salts of phosphotungstate metalates with cobalt, nickel, or copper in the coordination sphere of the complex, which are promising compounds in the fields of materials science, catalysis, and medicine. Compounds with the Keggin anion ([(CH3)4N]5[PW11O39Z(H2O)]⋅nH2O and [(C2H5)4N]5[PW11O39Z(H2O)]⋅mH2O, where Z = Co2+, Ni2+, or Cu2+) have been synthesized from aqueous solutions. Their thermal decomposition and crystalline decomposition products have been characterized by differential scanning calorimetry (DSC), thermogravimetry, IR spectroscopy, X-ray powder diffraction (XRD), and electron microscopy. A general scheme of their thermolysis has been proposed. It has been shown that phosphorus, cobalt, nickel, and copper ions enter ZO ⋅ 0.5P2O5⋅11WO3 or Z6/73P6/73W66/73O3 phases with the phosphor tungsten bronze structure; phases with similar chemical composition have not been documented previously. The results of this work can appear useful in predicting the thermal properties and phase compositions of thermolysis products of similar polyoxometalates in order to manufacture new related materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Roy, D. C. Crans, T. N. Parac-Vogt, et al., Polyoxometalates in Catalysis, Biology, Energy and Materials Science (Frontiers Media SA, Lausanne, 2019). https://doi.org/10.3389/978-2-88963-233-6

  2. T. Okuhara, H. Watanabe, T. Nishimura, et al., Chem. Mater. 12, 2230 (2000). https://doi.org/10.1021/CM9907561

    Article  CAS  Google Scholar 

  3. P. A. Nikul’shin, A. V. Mozhaev, D. I. Ishutenko, et al., Kinet. Catal. 53, 620 (2012).

    Article  Google Scholar 

  4. L. A. Cherednichenko and Y. A. Moroz, Kinet. Catal. 59, 572 (2018). https://doi.org/10.1134/S0023158418050038

    Article  CAS  Google Scholar 

  5. S. Zhao, X. Zhao, H. Zhang, et al., Nano Energy 35, 405 (2017).

    Article  CAS  Google Scholar 

  6. A. Patel, N. Narkhede, S. Singh, et al., Cat. Rev. Sci. Eng. 58, 337 (2016). https://doi.org/10.1080/01614940.2016.1171606

    Article  CAS  Google Scholar 

  7. N. C. Coronel, M. J. Silva, S. O. Ferreira, et al., Chem. Select. 4, 302 (2019). https://doi.org/10.1002/slct.201802616

    Article  CAS  Google Scholar 

  8. Z. Lang, J. Miao, Y. Lan, et al., APL Mater. 8, 120702 (2020). https://doi.org/10.1063/5.0031374

    Article  CAS  Google Scholar 

  9. Y. Torlak, JOTCSA 5, 1169 (2018). https://doi.org/10.18596/jotcsa.420009

    Article  CAS  Google Scholar 

  10. Z. Iliyas, J. Ma, L. Li, et al., Funct. Mater. Lett. 13, 2051022 (2020). https://doi.org/10.1142/S1793604720510224

    Article  CAS  Google Scholar 

  11. L. Han, X. Liu, X. Wang, et al., J. Solid State Electrochem. 22, 237 (2018). https://doi.org/10.1007/s10008-017-3734-9

    Article  CAS  Google Scholar 

  12. A. Guillén-López, N. D. Espinosa-Torres, A. K. Cuentas-Gallegos, et al., Carbon 130, 623 (2018). https://doi.org/10.1016/j.carbon.2018.01.043

    Article  CAS  Google Scholar 

  13. K. Allmen, R. Moré, R. Muller, et al., ChemPlusChem 80, 1389 (2015). https://doi.org/10.1002/cplu.201500074

    Article  CAS  Google Scholar 

  14. Y. M. Zhang, Ch. W. An, D. F. Zhang, et al, Russ. J. Inorg. Chem. 66, 679 (2021). https://doi.org/10.1134/S0036023621050223

    Article  CAS  Google Scholar 

  15. M. T. Pope and A. Muller, et al., Polyoxometalates: from Platonic Solids to Anti-Retroviral Activity (Kluwer Academic Publishers, Dordrecht, 1994).

    Book  Google Scholar 

  16. R. Prudent, V. Moucadel, B. Laudet, et al., Chem. Biol. 15, 683 (2008). https://doi.org/10.1016/j.chembiol.2008.05.018

    Article  CAS  PubMed  Google Scholar 

  17. A. A. Ostroushko, I. D. Gagarin, I. G. Danilova, et al., Nanosyst.: Phys., Chem., Math. 10, 318 (2019). https://doi.org/10.17586/2220-8054-2019-10-3-318-349

    Article  CAS  Google Scholar 

  18. A. A. Ostroushko, K. V. Grzhegorzhevskii, S. Yu. Medvedeva, et al., Nanosyst.: Phys., Chem., Math. 12, 81 (2021). https://doi.org/10.17586/2220-8054-2021-12-1-81-112

    Article  CAS  Google Scholar 

  19. S. A. Semenov, V. Y. Musatova, D. V. Drobot, et al., Russ. J. Inorg. Chem. 65, 61 (2020). https://doi.org/10.31857/S0044457X20010146

    Article  CAS  Google Scholar 

  20. A. S. Pronin, S. A. Semenov, D. V. Drobot, et al., Russ. J. Inorg. Chem. 65, 1173 (2020). https://doi.org/10.1134/S0036023620080136

    Article  CAS  Google Scholar 

  21. H. M. Asif, R. B. Bi, M. Tariq, et al., Russ. J. Inorg. Chem. 66, 340 (2021). https://doi.org/10.1134/S0036023621030025

    Article  CAS  Google Scholar 

  22. E. V. Fesik, T. M. Buslaeva, L. S. Tarasova, et al., Russ. J. Inorg. Chem. 65, 1558 (2020). https://doi.org/10.1134/S0036023620100058

    Article  CAS  Google Scholar 

  23. R. X. Tan, Q. H. Wang, T. X. Xiao, et al., Russ. J. Inorg. Chem. 65, 1276 (2020). https://doi.org/10.1134/S0036023620080161

    Article  CAS  Google Scholar 

  24. A. H. Al’Khazradzhi, A. V. Krylov, M. V. Kulikova, et al., Fine Chem. Technol. 11, 28 (2016). https://doi.org/10.32362/2410-6593-2016-11-6-28-35

    Article  Google Scholar 

  25. A. D. Pomogailo and G. I. Dzhardimalieva, Metal-Polymer Hybrid Nanocomposites (Nauka, Moscow, 2015) [in Russian].

    Google Scholar 

  26. S. Gross and K. Muller, J. Sol-Gel. Sci. Technol. 60, 283 (2011). https://doi.org/10.1007/s10971-011-2565-x

    Article  CAS  Google Scholar 

  27. M. Carraro and S. Gross, Materials 7, 3956 (2014). https://doi.org/10.3390/ma7053956

    Article  PubMed  PubMed Central  Google Scholar 

  28. Y. Li, X.-Y. Yang, Y. Feng, et al., Crit. Rev. Solid State Mater. Sci. 37, 1 (2012). https://doi.org/10.1080/10408436.2011.606512

    Article  CAS  Google Scholar 

  29. K. O. Abdulwahab, M. A. Malik, P. O’Brien, et al., Mater. Sci. Semicond. Process. 27, 303 (2014). https://doi.org/10.1016/j.mssp.2014.06.052

    Article  CAS  Google Scholar 

  30. B. Donkova and G. Avdeev, J. Therm. Anal. Calorim. 121, 567 (2015). https://doi.org/10.1007/s10973-015-4590-4

    Article  CAS  Google Scholar 

  31. D. Saikia, P. K. Saikia, P. K. Gogoi, et al., Mater. Chem. Phys. 131, 223 (2011). https://doi.org/10.1016/j.matchemphys.2011.09.011

    Article  CAS  Google Scholar 

  32. J. A. Gamelas, F. A. Couto, M. C. Trovgo, et al., Thermochim. Acta 326, 165 (1999). https://doi.org/10.1016/S0040-6031(98)00597-8

    Article  CAS  Google Scholar 

  33. Ya. A. Moroz, N. S. Lozinskii, A. N. Lopanov, et al., Vest. BGTU 12, 126 (2020). https://doi.org/10.34031/2071-7318-2020-5-12-126-125

    Article  Google Scholar 

  34. Ya. A. Moroz and L. A. Cherednichenko, Vest. DonNU, Ser. A 1, 95 (2018).

    Google Scholar 

  35. M. T. Pope, Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).

    Book  Google Scholar 

  36. Ya. A. Moroz, Vest. DonNU, Ser. A 1, 92 (2017).

    Google Scholar 

  37. Ya. A. Moroz, N. S. Lozinskii, A. N. Lopanov, et al., Inorg. Mater. 57, 835 (2021). https://doi.org/10.1134/S0020168521080069

    Article  CAS  Google Scholar 

  38. C. N. Kato, N. Ukai, D. Miyamae, et al., Advanced Topics in Crystallization. BoD—Books on Demand (2015). https://doi.org/10.5772/59598

  39. J. Fuchs, A. Thiele, and R. Palm, Z. Naturforsch., B: Chem. Sci. 36, 544 (2014). https://doi.org/10.1515/znb-1981-0504

    Article  Google Scholar 

  40. K. Patel and A. Patel, Mater. Res. Bull. 47, 425 (2012).

    Article  CAS  Google Scholar 

  41. U. B. Mioč, R. Z. Dimitrijević, M. Davidović, et al., J. Mater. Sci. 29, 3705 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Moroz.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moroz, Y.A., Lozinskii, N.S. & Lopanov, A.N. Synthesis and Thermal Properties of Tetramethylammonium and Tetraethylammonium Salts of Phosphotungstate Metalates with Some 3d Elements. Russ. J. Inorg. Chem. 67, 166–172 (2022). https://doi.org/10.1134/S0036023622020103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622020103

Keywords:

Navigation