Abstract
Apatite calcium phosphates have been synthesized at pH 9–11, Ca/P = 1.50–1.67 under variable isolation conditions. A complex procedure for identification of inclusion of amorphous calcium phosphate by precipitation of hydroxyapatite under non-equilibrium conditions, including XRD/FTIR/DTA methods. The maximal stabilization of amorphous phase inclusions in hydroxyapatite structure proceeds at precipitation pH 9, fast reaction of the chemicals without precipitate maturation stage under mother solution and careful dehydration by ethanol followed by heating at 400°C. Contradictions in reported physicochemical properties apatite calcium phosphates are related to formation of amorphous inclusions. A scheme of formation and thermal transformations of apatitic calcium phosphates under different equilibrium and formation conditions has been suggested for monophase stoichiometric hydroxyapatite, biphasic composites based on calcium-deficient hydroxyapatites, and amorphous calcium phosphate
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.REFERENCES
T. V. Safronova, Inorg. Mater. 57, 443 (2021). https://doi.org/10.1134/S002016852105006X
S. V. Dorozhkin, Ceram. Int. 42, 6529 (2016). https://doi.org/10.1016/j.ceramint.2016.01.062
T. Sakae, H. Nakada, and J. P. LeGeros, J. Hard. Tis. Biol. 24, 111 (2015). https://doi.org/10.2485/jhtb.24.111
S. N. Danil’chenko, Visnik SumDU, 2, 33 (2007).
A. Destainville, E. Champion, D. Bernache-Assollant, et al., Mater. Chem. Phys. 80, 269 (2003). https://doi.org/10.1016/S0254-0584(02)00466-2
V. Uskoković, RSC Adv. 5, 36614 (2015). https://doi.org/10.1039/C4RA17180B
S. V. Borisov, S. A. Magarill, and N. V. Pervukhina, J. Struct. Chem. 60, 1191 (2019). https://doi.org/10.1134/S0022476619080018
K. Ishikawa, P. Ducheyne, and S. Radin, J. Mater. Sci. Mater. Med. 4, 165 (1993). https://doi.org/10.1007/BF00120386
M. Vignoles, G. Bonel, R. A. Young, Calcified Tis. Int. 40, 64 (1983). https://doi.org/10.1007/BF02555707
V. K. Krut’ko, A. I. Kulak, O. N. Musskaya, Inorg. Mater. 53, 429 (2017).
S. V. Makarova, N. V. Bulina, I. Y. Prosanov, et al., Russ. J. Inorg. Chem. 65, 1831 (2020). https://doi.org/10.1134/S0036023620120116
F. F. Murzakhanov, G. V. Mamin, M. A. Goldberg, et al., Russ. J. Coord. Chem. 46, 729 (2020). https://doi.org/10.1134/S1070328420110044
H. Zhang and M. Zhang, Mater. Chem. Phys. 126, 642 (2011). https://doi.org/10.1016/j.matchemphys.2010.12.067
M. V. Nikolenko, K. V. Vasylenko, V. D. Myrgorodska, et al., Processes 8, 1009 (2020). https://doi.org/10.3390/pr8091009
R. I. Martin and P. W. Brown, J. Biomed. Mater. Res. 35, 299 (1997). https://doi.org/10.1002/(SICI)1097-4636(19970605)-35:3<299::AID-JBM4>3.0.CO;2-C
M. A. Trubitsyn, H. V. Hung, L. V. Furda, et al., Russ. J. Inorg. Chem. 66, 654 (2021). https://doi.org/10.1134/S0036023621050211
C. Combes and C. Rey, Acta Biomater. 6, 3362 (2010). https://doi.org/10.1016/j.actbio.2010.02.017
S. Koutsopoulos, J. Biomed. Mater. Res. 62, 600 (2002). https://doi.org/10.1002/jbm.10280
V. K. Tsuber, L. A. Lesnikovich, A. I. Kulak, et al., Pharm. Chem. J. 40, 455 (2006). https://doi.org/10.1007/s11094-006-0151-2
V. K. Krut’ko, A. I. Kulak, L. A. Lesnikovich, et al., Russ. J. Gen. Chem. 77, 336 (2007). https://doi.org/10.1134/S1070363207030036
O. N. Musskaya, A. I. Kulak, V. K. Krut’ko, et al., Inorg. Mater. 54, 117 (2018).
S. Somrani, C. Rey, and M. Jemal, J. Mater. Chem. 13, 888 (2003). https://doi.org/10.1039/B210900J
R. G. Carrodeguas and S. De Aza, Acta Biomater. 7, 3536 (2011). https://doi.org/10.1016/j.actbio.2011.06.019
M. Markovic, B. O. Fowler, and M. S. Tung, J. Res. Natl. Inst. Stand. Technol. 109, 553 (2004). https://doi.org/10.6028/jres.109.042
A. Jillavenkatesa and Sr. R. A. Condrate, Spectrosc. Let. 31, 1619 (1998). https://doi.org/10.1080/00387019808007439
B. Boonchom and P. Nart, Mater. Let. 63, 1709 (2009). https://doi.org/10.1016/j.matlet.2009.05.026
K. A. Gross, V. Gross, and C. C. Berndt, J. Am. Ceram. Soc. 81, 106 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02301.x
H. A. Bethe, Proc. R. Soc., Ser. A 150, 552 (1935). https://doi.org/10.1098/rspa.1935.0122
H. Chaair, J. C. Heughebaert, and M. Heughebaert, J. Mater. Chem. 5, 895 (1995). https://doi.org/10.1039/JM9950500895
K. Hurle and BohnerM. Neubauer, et al., Acta Biomater. 23, 338 (2015). https://doi.org/10.1016/j.actbio.2015.05.026
Y. Huang, W. Huang, L. Sun, et al., Int. J. App. Cer. Tech. 7, 184 (2010). https://doi.org/10.1111/j.1744-7402.2009.02384.x
I. E. Glazov, V. K. Krut’ko, A. I. Kulak, et al., Mater. Today Comm. 27, 102224 (2021). https://doi.org/10.1016/j.mtcomm.2021.102224
I. E. Glazov, R. A. Vlasov, V. K. Krut’ko, et al., Vestsi NAN Belarus. Ser. Khim. Navuk 55, 135 (2019). https://doi.org/10.29235/1561-8331-2019-55-2-135-141
N. Pleshko, A. Boskey, and R. Mendelsohn, Biophys. J. 60, 786 (1991). https://doi.org/10.1016/S0006-3495(91)82113-0
I. E. Glazov, V. K. Krut’ko, O. N. Musskaya, and A. I. Kulak, Vestsi NAN Belarus. Ser. Khim. Navuk 55, 391 (2019) https://doi.org/10.29235/1561-8331-2019-55-4-391-399
K. Schrodter, G. Bettermann, T. Staffel, et al., Ullmann’s Encycl. Ind. Chem. 26, 679 (2012). https://doi.org/10.1002/14356007.a19_465.pub3
R. M. Hill and L. A. Dissado, J. Phys. C: Sol. State Phys. 15, 5171 (1982). https://doi.org/10.1088/0022-3719/15/25/010
Funding
This work was financially supported by the State program of scientific research “Chemical Processes, Reagents, and Technologies, Bioregulators and Bioorganic Chemistry” under State Assignment 2.1.04.7 for 2021–2025 and the National Academy of Sciences of Belarus (project no. 2021-27-173 for 2021).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare no conflicts of interest.
Additional information
Translated by I. Kudryavtsev
Rights and permissions
About this article
Cite this article
Glazov, I.E., Krut’ko, V.K., Musskaya, O.N. et al. Calcium Phosphate Apatites: Wet Formation, Thermal Transformations, Terminology, and Identification. Russ. J. Inorg. Chem. 67, 173–182 (2022). https://doi.org/10.1134/S0036023622020048
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0036023622020048