Skip to main content
Log in

Calcium Phosphate Apatites: Wet Formation, Thermal Transformations, Terminology, and Identification

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Apatite calcium phosphates have been synthesized at pH 9–11, Ca/P = 1.50–1.67 under variable isolation conditions. A complex procedure for identification of inclusion of amorphous calcium phosphate by precipitation of hydroxyapatite under non-equilibrium conditions, including XRD/FTIR/DTA methods. The maximal stabilization of amorphous phase inclusions in hydroxyapatite structure proceeds at precipitation pH 9, fast reaction of the chemicals without precipitate maturation stage under mother solution and careful dehydration by ethanol followed by heating at 400°C. Contradictions in reported physicochemical properties apatite calcium phosphates are related to formation of amorphous inclusions. A scheme of formation and thermal transformations of apatitic calcium phosphates under different equilibrium and formation conditions has been suggested for monophase stoichiometric hydroxyapatite, biphasic composites based on calcium-deficient hydroxyapatites, and amorphous calcium phosphate

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. T. V. Safronova, Inorg. Mater. 57, 443 (2021). https://doi.org/10.1134/S002016852105006X

    Article  CAS  Google Scholar 

  2. S. V. Dorozhkin, Ceram. Int. 42, 6529 (2016). https://doi.org/10.1016/j.ceramint.2016.01.062

    Article  CAS  Google Scholar 

  3. T. Sakae, H. Nakada, and J. P. LeGeros, J. Hard. Tis. Biol. 24, 111 (2015). https://doi.org/10.2485/jhtb.24.111

    Article  CAS  Google Scholar 

  4. S. N. Danil’chenko, Visnik SumDU, 2, 33 (2007).

  5. A. Destainville, E. Champion, D. Bernache-Assollant, et al., Mater. Chem. Phys. 80, 269 (2003). https://doi.org/10.1016/S0254-0584(02)00466-2

    Article  CAS  Google Scholar 

  6. V. Uskoković, RSC Adv. 5, 36614 (2015). https://doi.org/10.1039/C4RA17180B

  7. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina, J. Struct. Chem. 60, 1191 (2019). https://doi.org/10.1134/S0022476619080018

    Article  CAS  Google Scholar 

  8. K. Ishikawa, P. Ducheyne, and S. Radin, J. Mater. Sci. Mater. Med. 4, 165 (1993). https://doi.org/10.1007/BF00120386

    Article  CAS  Google Scholar 

  9. M. Vignoles, G. Bonel, R. A. Young, Calcified Tis. Int. 40, 64 (1983). https://doi.org/10.1007/BF02555707

    Article  Google Scholar 

  10. V. K. Krut’ko, A. I. Kulak, O. N. Musskaya, Inorg. Mater. 53, 429 (2017).

    Article  Google Scholar 

  11. S. V. Makarova, N. V. Bulina, I. Y. Prosanov, et al., Russ. J. Inorg. Chem. 65, 1831 (2020). https://doi.org/10.1134/S0036023620120116

    Article  CAS  Google Scholar 

  12. F. F. Murzakhanov, G. V. Mamin, M. A. Goldberg, et al., Russ. J. Coord. Chem. 46, 729 (2020). https://doi.org/10.1134/S1070328420110044

    Article  CAS  Google Scholar 

  13. H. Zhang and M. Zhang, Mater. Chem. Phys. 126, 642 (2011). https://doi.org/10.1016/j.matchemphys.2010.12.067

    Article  CAS  Google Scholar 

  14. M. V. Nikolenko, K. V. Vasylenko, V. D. Myrgorodska, et al., Processes 8, 1009 (2020). https://doi.org/10.3390/pr8091009

    Article  CAS  Google Scholar 

  15. R. I. Martin and P. W. Brown, J. Biomed. Mater. Res. 35, 299 (1997). https://doi.org/10.1002/(SICI)1097-4636(19970605)-35:3<299::AID-JBM4>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  16. M. A. Trubitsyn, H. V. Hung, L. V. Furda, et al., Russ. J. Inorg. Chem. 66, 654 (2021). https://doi.org/10.1134/S0036023621050211

    Article  CAS  Google Scholar 

  17. C. Combes and C. Rey, Acta Biomater. 6, 3362 (2010). https://doi.org/10.1016/j.actbio.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  18. S. Koutsopoulos, J. Biomed. Mater. Res. 62, 600 (2002). https://doi.org/10.1002/jbm.10280

    Article  CAS  PubMed  Google Scholar 

  19. V. K. Tsuber, L. A. Lesnikovich, A. I. Kulak, et al., Pharm. Chem. J. 40, 455 (2006). https://doi.org/10.1007/s11094-006-0151-2

    Article  CAS  Google Scholar 

  20. V. K. Krut’ko, A. I. Kulak, L. A. Lesnikovich, et al., Russ. J. Gen. Chem. 77, 336 (2007). https://doi.org/10.1134/S1070363207030036

    Article  CAS  Google Scholar 

  21. O. N. Musskaya, A. I. Kulak, V. K. Krut’ko, et al., Inorg. Mater. 54, 117 (2018).

    Article  CAS  Google Scholar 

  22. S. Somrani, C. Rey, and M. Jemal, J. Mater. Chem. 13, 888 (2003). https://doi.org/10.1039/B210900J

    Article  CAS  Google Scholar 

  23. R. G. Carrodeguas and S. De Aza, Acta Biomater. 7, 3536 (2011). https://doi.org/10.1016/j.actbio.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  24. M. Markovic, B. O. Fowler, and M. S. Tung, J. Res. Natl. Inst. Stand. Technol. 109, 553 (2004). https://doi.org/10.6028/jres.109.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A. Jillavenkatesa and Sr. R. A. Condrate, Spectrosc. Let. 31, 1619 (1998). https://doi.org/10.1080/00387019808007439

    Article  CAS  Google Scholar 

  26. B. Boonchom and P. Nart, Mater. Let. 63, 1709 (2009). https://doi.org/10.1016/j.matlet.2009.05.026

    Article  CAS  Google Scholar 

  27. K. A. Gross, V. Gross, and C. C. Berndt, J. Am. Ceram. Soc. 81, 106 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02301.x

    Article  CAS  Google Scholar 

  28. H. A. Bethe, Proc. R. Soc., Ser. A 150, 552 (1935). https://doi.org/10.1098/rspa.1935.0122

  29. H. Chaair, J. C. Heughebaert, and M. Heughebaert, J. Mater. Chem. 5, 895 (1995). https://doi.org/10.1039/JM9950500895

    Article  CAS  Google Scholar 

  30. K. Hurle and BohnerM. Neubauer, et al., Acta Biomater. 23, 338 (2015). https://doi.org/10.1016/j.actbio.2015.05.026

    Article  CAS  PubMed  Google Scholar 

  31. Y. Huang, W. Huang, L. Sun, et al., Int. J. App. Cer. Tech. 7, 184 (2010). https://doi.org/10.1111/j.1744-7402.2009.02384.x

    Article  CAS  Google Scholar 

  32. I. E. Glazov, V. K. Krut’ko, A. I. Kulak, et al., Mater. Today Comm. 27, 102224 (2021). https://doi.org/10.1016/j.mtcomm.2021.102224

    Article  CAS  Google Scholar 

  33. I. E. Glazov, R. A. Vlasov, V. K. Krut’ko, et al., Vestsi NAN Belarus. Ser. Khim. Navuk 55, 135 (2019). https://doi.org/10.29235/1561-8331-2019-55-2-135-141

    Article  CAS  Google Scholar 

  34. N. Pleshko, A. Boskey, and R. Mendelsohn, Biophys. J. 60, 786 (1991). https://doi.org/10.1016/S0006-3495(91)82113-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. I. E. Glazov, V. K. Krut’ko, O. N. Musskaya, and A. I. Kulak, Vestsi NAN Belarus. Ser. Khim. Navuk 55, 391 (2019) https://doi.org/10.29235/1561-8331-2019-55-4-391-399

    Article  CAS  Google Scholar 

  36. K. Schrodter, G. Bettermann, T. Staffel, et al., Ullmann’s Encycl. Ind. Chem. 26, 679 (2012). https://doi.org/10.1002/14356007.a19_465.pub3

    Article  CAS  Google Scholar 

  37. R. M. Hill and L. A. Dissado, J. Phys. C: Sol. State Phys. 15, 5171 (1982). https://doi.org/10.1088/0022-3719/15/25/010

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the State program of scientific research “Chemical Processes, Reagents, and Technologies, Bioregulators and Bioorganic Chemistry” under State Assignment 2.1.04.7 for 2021–2025 and the National Academy of Sciences of Belarus (project no. 2021-27-173 for 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Glazov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazov, I.E., Krut’ko, V.K., Musskaya, O.N. et al. Calcium Phosphate Apatites: Wet Formation, Thermal Transformations, Terminology, and Identification. Russ. J. Inorg. Chem. 67, 173–182 (2022). https://doi.org/10.1134/S0036023622020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622020048

Keywords:

Navigation