Skip to main content
Log in

Thermal Expansion and Thermodynamic Functions of Europium Hafnate at 298–1300 K

  • PHYSICAL METHODS OF INVESTIGATION
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry and high-temperature X-ray diffraction were used to measure the molar heat capacity and lattice thermal expansion of pyrochlore europium hafnate in the temperature range 298–1300 K. Eu2Hf2O7 does not experience structural transformations in this temperature range. The thermal expansivities of europium hafnate were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. V. Popov and A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem. 60, 602 (2015). https://doi.org/10.1134/S0036023615050162

    Article  CAS  Google Scholar 

  2. E. R. Andrievskaya, J. Eur. Ceram. Soc. 28, 2363 (2008). https://doi.org/10.1016/jeurceramsoc.2008.01.009

    Article  CAS  Google Scholar 

  3. R. W. Scheidecker, D. R. Wilder, and H. Moeller, J. Am. Ceram. Soc. 60, 501 (1977). https://doi.org/10.1111/j.1151-2916.1977.tb14092.x

    Article  CAS  Google Scholar 

  4. C. R. Stanek and R. W. Grimes, J. Am. Ceram. Soc. 85, 2139 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00423.x

  5. M. J. D. Rushton, R. W. Grimes, C. R. Stanek, and S. Owens, J. Mater. Res. 19, 1603 (2004).https://doi.org/10.1557/JMR.2004.0231

  6. R. C. Ewing, W. J. Weber, and J. Lian, J. Appl. Phys. 95, 5949 (2004). https://doi.org/10.1063/1.1707213

  7. H. Yamamura, Solid State Ionics 158, 359 (2003).https://doi.org/10.1016/s0167-2738(02)00874-3

  8. A. V. Shlyakhtina and L. G. Shcherbakova, Solid State Ionics 192, 200 (2011). https://doi.org/10.1016/j.ssi.2010.07.013

  9. X. Q. Cao, R. Vassen, and D. Stoever, J. Eur. Ceram. Soc. 24, 1 (2004). https://doi.org/10.1016/S0955-2219(03)00129-8

  10. G. Mehboob, M.-J. Liu, T. Xu, et al., Ceram. Int. 46, 8497 (2020). https://doi.org/10.1016/j.ceramint.2019.12.200

  11. N. P. Padture, Science 296, 280 (2002).https://doi.org/10.1126/science.1068609

  12. G. Costa, B. J. Harder, V. L. Wiesner, et al., J. Am. Ceram. Soc. 102, 2948 (2019). https://doi.org/10.1111/jace.16113

  13. O. Fabrichnaya and H. J. Seifert, J. Phase Equilib. Diffus. 32, 2 (2010). https://doi.org/10.1007/s11669-010-9815-4

  14. F. A. López-Cota, N. M. Cepeda-Sánchez, J. A. Díaz-Guillén, et al., J. Am. Ceram. Soc. 100, 1994 (2017). https://doi.org/10.1111/jace.14712

  15. R. Kandan, B. P. Reddy, G. Panneerselvan, and U. K. Mudali, J. Therm. Anal. Calorim. 131, 2687 (2018). https://doi.org/10.1007/s10973-017-6802-6

  16. R. Babu and K. Nagarajan, J. Alloys Compd. 265, 137 (1998). https://doi.org/10.1016/s0925-8388(97)00430-1

  17. V. N. Guskov, A. V. Tyurin, A. V. Guskov, et al., Ceram. Int. 46, 12822 (2020). https://doi.org/10.1016/j.ceramint.2020.02.052

  18. P. G. Gagarin, A. V. Guskov, V. N. Guskov, et al., Ceram. Int. 47, 2892 (2021). https://doi.org/10.1016/j.ceramint.2020.09072

    Article  CAS  Google Scholar 

  19. M. E. Wieser, Pure Appl. Chem. 78, 2051 (2006). https://doi.org/10.1351/pac200678112051

  20. T. Yu. Kolomiets, G. B. Tel’nova, A. A. Ashmarin, et al., Inorg. Mater. 53, 874 (2017). https://doi.org/10.7868/S0002337X17080152

  21. C. G. Maier and K. K. Kelley, J. Am. Chem. Soc. 54, 3243 (1932). https://doi.org/10.1021/ja01347a029

  22. R. J. M. Konings, O. Beneš, O. A. Kovács, et al., J. Phys. Chem. Ref. Data 43, 013101 (2014). https://doi.org/10.1063/1.4825256

  23. L. B. Pankratz, Bull. U. S., Bur. Mines 672, 188 (1982).

    Google Scholar 

  24. K. V. G. Kutty, S. Rajagopalan, C. K. Mathews, et al., Mater. Res. Bull. 29, 759 (1994). https://doi.org/10.1016/0025-5408(94)90201-1

  25. K. V. G. Kutty, S. Rajagolapan, and R. Asuvathraman, Thermochim. Acta 168, 205 (1990). https://doi.org/10.1016/0040-6031(90)80639-G

Download references

ACKNOWLEDGMENTS

This work was carried out using the equipment of the Center for Collective Use of the Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences. The assistance of PhD A.A. Ashmarin in HTXRD studies is kindly appreciated.

Funding

This work was supported by the Russian Science Foundation project no. 18-13-00025: https://rscf.ru/project/18-13-00025/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Guskov.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guskov, A.V., Gagarin, P.G., Guskov, V.N. et al. Thermal Expansion and Thermodynamic Functions of Europium Hafnate at 298–1300 K. Russ. J. Inorg. Chem. 66, 1710–1713 (2021). https://doi.org/10.1134/S0036023621110085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621110085

Keywords:

Navigation