Abstract
The effect of the destruction temperature during aerosol-assisted chemical vapor deposition of highly dispersed ZnO on its microstructural characteristics has been studied with the aim of developing an efficient method for fabrication of selective gas-sensing films based on semiconductor metal oxides. It has been demonstrated that increasing the operating temperature from 350 to 450°С leads to a change in the shape of nanoparticles from a regular hexagonal prism to a sphere. For the films obtained in a stream of nitrogen and air as carrier gases at a destruction temperature of 400°С, the chemoresistive gas-sensing properties have been studied. The highest sensitivity has been observed at a detection temperature of 250°С toward carbon monoxide (response Rair/RCO is 1.3–6.1 when detecting 4–100 ppm CO). The films are characterized by good selectivity: at 250°С, the responses to NH3, NO2, benzene, and H2 were no higher than 1.7, while the responses to CO were 3.7 and 6.1 for coatings fabricated in a flow of air and nitrogen, respectively.
This is a preview of subscription content, access via your institution.







REFERENCES
A. B. Djurišić, X. Chen, Y. H. Leung, et al., J. Mater. Chem. 22, 6526 (2012). https://doi.org/10.1039/c2jm15548f
R. Ahmad, S. M. Majhi, X. Zhang, et al., Adv. Colloid Interface Sci. 270, 1 (2019). https://doi.org/10.1016/j.cis.2019.05.006
A. B. Djuriić, A. M. C. Ng, and X. Y. Chen, Prog. Quantum Electron. 34, 191 (2010). https://doi.org/10.1016/j.pquantelec.2010.04.001
J. Lv, C. Li, and Z. Chai, J. Lumin. 208, 225 (2019). https://doi.org/10.1016/j.jlumin.2018.12.050
S. Xu and Z. L. Wang, Nano Res. 4, 1013 (2011). https://doi.org/10.1007/s12274-011-0160-7
S. K. Arya, S. Saha, J. E. Ramirez-Vick, et al., Anal. Chim. Acta 737, 1 (2012). https://doi.org/10.1016/j.aca.2012.05.048
Y. Deng, Semiconducting Metal Oxides for Gas Sensing (Elsevier, 2019). https://doi.org/10.1007/978-981-13-5853-1
S. Y. Jeong, J. S. Kim, and J. H. Lee, Adv. Mater. 32, 2002075 (2020). https://doi.org/10.1002/adma.202002075
Z. L. Wang, J. Phys.: Condens. Matter 16, 25 (2004). https://doi.org/10.1088/0953-8984/16/25/R01
L. Wang, X. Yang, W. Yang, et al., Appl. Surf. Sci. 398, 97 (2017). https://doi.org/10.1016/j.apsusc.2016.12.035
K. Bramhaiah, V. N. Singh, and N. S. John, Phys. Chem. Chem. Phys. 18, 1478 (2016). https://doi.org/10.1039/c5cp05081b
N. Tamaekong, C. Liewhiran, A. Wisitsoraat, et al., Sens. Actuators, B 152, 155 (2011). https://doi.org/10.1016/j.snb.2010.11.058
N. Tamaekong, C. Liewhiran, A. Wisitsoraat, et al., Sensors 9, 6652 (2009). https://doi.org/10.3390/s90906652
X. Hou and K. L. Choy, Chem. Vap. Deposition 12, 583 (2006). https://doi.org/10.1002/cvde.200600033
R. G. Palgrave and I. P. Parkin, J. Am. Chem. Soc. 128, 1587 (2006). https://doi.org/10.1021/ja055563v
W. Gao and Z. Li, Ceram. Int. 30, 1155 (2004). https://doi.org/10.1016/j.ceramint.2003.12.197
V. Craciun, J. Elders, J. G. E. Gardeniers, et al., Appl. Phys. Lett. 65 (23), 2963 (1994). https://doi.org/10.1063/1.112478
M. Opel, S. Geprägs, M. Althammer, et al., J. Phys. D: Appl. Phys. 47, 034002 (2014). https://doi.org/10.1088/0022-3727/47/3/034002
S. O’Brien, M. G. Nolan, M. Çopuroglu, et al., Thin Solid Films 518, 4515 (2010). https://doi.org/10.1016/j.tsf.2009.12.020
X. J. Qin, L. Zhao, G. J. Shao, et al., Thin Solid Films 542, 144 (2013). https://doi.org/10.1016/j.tsf.2013.07.002
M. Claros, M. Setka, Y. P. Jimenez, et al., Nanomaterials 10, 471 (2020). https://doi.org/10.3390/nano10030471
D. S. Bhachu, G. Sankar, and I. P. Parkin, Chem. Mater. 24, 4704 (2012). https://doi.org/10.1021/cm302913b
S. Vallejos, N. Pizúrová, J. Čechal, et al., J. Visualized Exp. 127, e56127 (2017).
A. Sáenz-Trevizo, P. Amezaga-Madrid, P. Pizá-Ruiz, et al., Mater. Sci. Semicond. Process. 45, 57 (2016). https://doi.org/10.1016/j.mssp.2016.01.018
J. Ding, S. Chen, N. Han, et al., Ceram. Int. 46, 15152 (2020). https://doi.org/10.1016/j.ceramint.2020.03.051
R. Elleuch, R. Salhi, N. Maalej, et al., J. Mater. Sci. Eng. B 178, 1124 (2013). https://doi.org/10.1016/j.mseb.2013.07.005
S. T. Hussain, S. A. Bakar, B. Saima, et al., Appl. Surface Sci. 258, 9610 (2012). https://doi.org/10.1016/j.apsusc.2012.05.157
M. Ling and C. Blackman, Phys. Status Solidi C 12, 869 (2015). https://doi.org/10.1002/pssc.201510047
T. Stoycheva, S. Vallejos, J. Calderer, et al., Procedia Eng. 5, 131 (2010). https://doi.org/10.1016/j.proeng.2010.09.065
W. Shen, Y. Zhao, and C. Zhang, Thin Solid Films 483, 382 (2005). https://doi.org/10.1016/j.tsf.2005.01.015
S. Vallejos, N. Pizúrová, I. Gràcia, et al., ACS Appl. Mater. Interfaces 8, 33335 (2016). https://doi.org/10.1021/acsami.6b12992
A. S. G. Khalil, S. Hartner, M. Ali, et al., J. Nanosci. Nanotechnol. 11, 10839 (2011). https://doi.org/10.1166/jnn.2011.4043
C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods 9, 671 (2012). https://doi.org/10.1038/nmeth.2089
A. S. Mokrushin, T. L. Simonenko, N. P. Simonenko, et al., J. Alloys Compd. 868, 159090 (2021). https://doi.org/10.1016/j.jallcom.2021.159090
A. S. Mokrushin, N. A. Fisenko, P. Y. Gorobtsov, et al., Talanta 221, 121455 (2021). https://doi.org/10.1016/j.talanta.2020.121455
I. A. Nagornov, A. S. Mokrushin, E. P. Simonenko, et al., Ceram. Int. 46, 7756 (2020). https://doi.org/10.1016/j.ceramint.2019.11.279
T. L. Simonenko, N. P. Simonenko, P. Y. Gorobtsov, et al., J. Alloys Compd. 832, 154957 (2020). https://doi.org/10.1016/j.jallcom.2020.154957
H. J. Kim, J. H. Lee, K. Hyo-Joong, et al., Sens. Actuators, B 192, 607 (2014). https://doi.org/10.1016/j.snb.2013.11.005
Funding
The study was supported by the Russian Science Foundation (project no. 20-73-00309).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare no conflicts of interest.
Additional information
Translated by G. Kirakosyan
Rights and permissions
About this article
Cite this article
Mokrushin, A.S., Gorban’, Y.M., Simonenko, N.P. et al. Nanostructured ZnO Films with Enhanced Sensitivity to CO Synthesized by AACVD. Russ. J. Inorg. Chem. 66, 1447–1454 (2021). https://doi.org/10.1134/S0036023621090072
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0036023621090072
Keywords:
- zinc oxide
- AACVD
- gas sensor
- carbon monoxide