Skip to main content
Log in

Low-Temperature Laser Synthesis of LiCoO2 and WO3 Films for Electrochromic Application

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The laser synthesis method is used to fabricate amorphous dielectric WO3 films on fused silica and c-sapphire substrates at room temperature and thin LiCoO2 films (thickness, 10–60 nm) on c-sapphire and silicon substrates. The films are intended for use as the key components of thin-film all-solid-state electrochromic cells based on flexible polymer substrates. The optical and electrophysical properties and surface morphology of the films prepared at room temperature are studied in relation to the type of subtrate and oxygen pressure used during growth process. Variation of the oxygen pressure has a marginal effect on the surface roughness of the WO3 films, which is 4–5 nm. The type of substrate has almost no influence on the surface roughness of the LiCoO2 films, which on average is 35 nm. Increasing the oxygen pressure inside the vacuum chamber leads to the formation of the WO3 films with better light transmission characteristics in the entire considered range of 200–1000 nm. The transmittance of the LiCoO2 films increases from 30 to 70% in the investigated spectral range of 300–1000 nm. The low-temperature laser synthesis is used in fabricating a WO3-based solid state electrochromic cell. When a voltage of 2 V is applied, its transmittance in the spectral range of 300 to 900 nm decreases by 30% for 2 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. Yang, J. H. Yu, H. J. Seo, et al., Appl. Surf. Sci. 461, 88 (2018). https://doi.org/10.1016/j.apsusc.2018.05.231

    Article  CAS  Google Scholar 

  2. D. Qiu, H. Ji, X. Zhang, et al., Inorg. Chem. 58, 2089 (2019). https://doi.org/10.1021/acs.inorgchem.8b03178

    Article  CAS  PubMed  Google Scholar 

  3. G. Yuan, C. Hua, L. Huang, et al., Appl. Surf. Sci. 421, 630 (2017). https://doi.org/10.1016/j.apsusc.2016.10.176

    Article  CAS  Google Scholar 

  4. T. Yong, X. Li, J. Bae, et al., Mater. Des. 162, 45 (2019). https://doi.org/10.1016/j.matdes.2018.11.016

    Article  CAS  Google Scholar 

  5. O. Nanda, N. Gupta, R. Grover, et al., AIP Adv. 8, 095117 (2018). https://doi.org/10.1063/1.5037454

    Article  CAS  Google Scholar 

  6. A. L. Belousov and T. N. Patrusheva, Zh. Sib. Fed. Un-ta. Tekh. Tekhnol. 7, 154 (2014). http://elib.sfu-kras.ru/bitstream/handle/2311/10348/03a_Belousov.pdf; jsessionid=1F76FBFB923DD8104A85B44FC13DCF-75?sequence=1

  7. K. Sauvet, L. Sauques, and A. Rougier, J. Phys. Chem. Solids 71, 696 (2010). https://doi.org/10.1016/j.jpcs.2009.12.069

    Article  CAS  Google Scholar 

  8. S.-C. Wang, K.-Y. Liu, and J.-L. Huang, Thin Solid Films 520, 1454 (2011). https://doi.org/10.1016/j.tsf.2011.08.046

    Article  CAS  Google Scholar 

  9. J. Li, Q. Jiang, N. Yuan, et al., Materials 11, 2280 (2018). https://doi.org/10.3390/ma11112280

    Article  CAS  PubMed Central  Google Scholar 

  10. K. Kim, D. Choi, H. Kim, et al., Int. J. Pr. Eng. Man. GT 5, 409 (2018). https://doi.org/10.1007/s40684-018-0043-4

    Article  Google Scholar 

  11. C. S. Ah, J. Song, S. M. Cho, et al., Bull. Korean Chem. Soc. 39, 1186 (2018). https://doi.org/10.1002/bkcs.11574

    Article  CAS  Google Scholar 

  12. X. Yan, L. Wang, and X. Qian, Coatings 10, 35 (2020). https://doi.org/10.3390/coatings10010035

    Article  CAS  Google Scholar 

  13. D. Wang, L. Wei, P. Shi, et al., J. Alloys Compd. 771, 100 (2019). https://doi.org/10.1016/j.jallcom.2018.08.268

    Article  CAS  Google Scholar 

  14. A. Yano, K. Hikima, J. Hata, et al., J. Electrochem. Soc. 165, A3221 (2018). https://doi.org/10.1149/2.0151814jes

    Article  CAS  Google Scholar 

  15. K. J. Patel, G. G. Bhatt, J. R. Ray, et al., J. Solid State Electrochem. 21, 337 (2017). https://doi.org/10.1007/s10008-016-3408-z

    Article  CAS  Google Scholar 

  16. G. Atak and Ö. D. Coşkun, Opt. Mater. 82, 160 (2018). https://doi.org/10.1016/j.optmat.2018.05.062

    Article  CAS  Google Scholar 

  17. A. Mehmood, X. Long, A. A. Haidry, et al., Ceram. Int. 46, 23295 (2020). https://doi.org/10.1016/j.ceramint.2020.06.035

    Article  CAS  Google Scholar 

  18. L. S. Parshina, O. A. Novodvorsky, O. D. Khramova, et al., Semiconductors 53, 160 (2019). https://doi.org/10.1134/S1063782619020192

    Article  CAS  Google Scholar 

  19. L. S. Parshina, O. D. Khramova, O. A. Novodvorsky, et al., Semiconductors 51, 407 (2017). https://doi.org/10.1134/S1063782617030228

    Article  CAS  Google Scholar 

  20. O. A. Novodvorsky, O. D. Khramova, E. O. Filippova, et al., Proc. SPIE 4644, 58 (2001). https://doi.org/10.1117/12.464189

    Article  Google Scholar 

  21. D. Evecan and Z. E. Highly, Curr. Appl. Phys. 19, 198 (2019). https://doi.org/10.1016/J.CAP.2018.12.006

    Article  Google Scholar 

  22. L. S. Parshina, O. A. Novodvorsky, O. D. Khramova, et al., Opt. Quantum Electron. 48, 316 (2016). https://doi.org/10.1007/s11082-016-0586-y

    Article  CAS  Google Scholar 

  23. S. Shiraki, T. Shirasawa, T. Suzuki, et al., ACS Appl. Mater. Interfaces 10, 41732 (2018). https://doi.org/10.1021/acsami.8b08926

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work supported by the Ministry of Science and Higher Education within the State assignment to the Federal Science Research Center “Crystallography and Photonics” Russian Academy of Sciences in part of “synthesis of thin films,” the Russian Foundation for Basic Research (project no. 19-29-03032) in the part of “investigation of thin films.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Parshina.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

The article is published based on the materials of Interdisciplinary Scientific Platform with International Participation “New Materials and Advanced Technologies”, November 23–26, 2020, Moscow, https://n-materials.ru/.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parshina, L.S., Novodvorsky, O.A. Low-Temperature Laser Synthesis of LiCoO2 and WO3 Films for Electrochromic Application. Russ. J. Inorg. Chem. 66, 1234–1238 (2021). https://doi.org/10.1134/S0036023621080209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621080209

Keywords:

Navigation