Skip to main content
Log in

Bone Cements Based on Struvite: The Effect of Vancomycin Loading and Assessment of Biocompatibility and Osteoconductive Potentials In Vivo

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In recent years, magnesium calcium phosphate materials have been considered as an alternative to calcium phosphate-based materials in reconstructive surgery. In this work, bone cements in the calcium phosphates–magnesium phosphates system were synthesized and studied. The interaction of this system with a cement liquid gives struvite MgNH4PO4·6H2O as the main phase. The obtained materials have a compressive strength of up to 54 ± 5 MPa, a setting time of 6–7 min, and a neutral pH value. The effect of the introduction of vancomycin to the cement materials was studied. Investigation of the kinetics of vancomycin release showed that up to 98% of the antibiotic is released within 21 days. The materials exhibited pronounced antibacterial activity against the Staphylococcus aureus and Escherichia coli strains. After the introduction of vancomycin, the zone of inhibition of bacterial growth more than doubled compared to the reference samples. In vivo tests were conducted, the structural factors were calculated based on the results of micro-CT. According to macro and micro signs, the cement materials are fully biocompatible; by the sixth week, the formation of new bone tissue is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. A. Haque and B. Chen, Materialia 13, 100852 (2020). https://doi.org/10.1016/j.mtla.2020.100852

    Article  CAS  Google Scholar 

  2. M. Nabiyouni, T. Brückner, H. Zhou, et al., Acta Biomater. 66, 23 (2018). https://doi.org/10.1016/j.actbio.2017.11.033

    Article  CAS  PubMed  Google Scholar 

  3. A. V. Severin, V. N. Rudin, and M. E. Paul’, Russ. J. Inorg. Chem. 65, 1436 (2020). https://doi.org/10.1134/S003602362009017X

    Article  CAS  Google Scholar 

  4. D. Zeng, L. Xia, W. Zhang, et al., Tissue Eng. 18 Part A, 870 (2012). https://doi.org/10.1089/ten.tea.2011.0379

  5. B. Kanter, A. Vikman, T. Brückner, et al., Acta Biomater. 69, 352 (2018). https://doi.org/10.1016/j.actbio.2018.01.035

    Article  CAS  PubMed  Google Scholar 

  6. O. Murillo, I. Grau, J. Lora-Tamayo, et al., Clin. Microbiol. Infect. 21, 254 (2015). https://doi.org/10.1016/j.cmi.2014.09.007

    Article  PubMed  Google Scholar 

  7. T. Niikura, S. Y. Lee, T. Iwakura, et al., J. Orthop. Sci. 21, 539 (2016). https://doi.org/10.1016/j.jos.2016.05.003

    Article  PubMed  Google Scholar 

  8. T. Li, L. Fu, J. Wang, et al., Infect. Drug Resist. 12, 2191 (2019). https://doi.org/10.2147/IDR.S203740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. J. H. Lee, S. J. Shin, S. N. Cho, et al., J. Arthroplasty 35, 864 (2020). https://doi.org/10.1016/j.arth.2019.10.023

    Article  PubMed  Google Scholar 

  10. S. A. Bozhkova, A. A. Novokshonova, and V. A. Konev, Modern Possibilities of Local Antibiotic Therapy of Periprosthetic Infection and Osteomyelitis (Literature Review) (Moscow, 2015) [in Russian].

    Google Scholar 

  11. S. P. Boelch, M. C. Jordan, J. Arnholdt, et al., J. Mater. Sci.: Mater. Med. 28, 104 (2017). https://doi.org/10.1007/s10856-017-5915-6

    Article  CAS  Google Scholar 

  12. A. R. Bishop, S. Kim, M. W. Squire, et al., J. Mech. Behav. Biomed. Mater. 87, 80 (2018). https://doi.org/10.1016/j.jmbbm.2018.06.033

    Article  CAS  PubMed  Google Scholar 

  13. www.rfbr.ru/rffi/portal/books/o_2089037

  14. D. Loca, M. Sokolova, J. Locs, et al., Mater. Sci. Eng. 49, 106 (2015). https://doi.org/10.1016/j.msec.2014.12.075

    Article  CAS  Google Scholar 

  15. K. K. Boyle, B. Sosa, L. Osagie, et al., PLOS ONE 14, E0222034 (2019). https://doi.org/10.1371/journal.pone.0222034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. Cabrejos-Azama, M. H. Alkhraisat, C. Rueda, et al., Mater. Sci. Eng. 61, 72 (2016). https://doi.org/10.1016/j.msec.2015.10.092

    Article  CAS  Google Scholar 

  17. B. L. Roller, A. M. Stoker, and J. L. Cook, J. Clin. Orthop. Trauma 11, 729 (2020). https://doi.org/10.1016/j.jcot.2020.06.011

    Article  Google Scholar 

  18. M. A. Goldberg, P. A. Krohicheva, A. S. Fomin, et al., Bioact. Mater. 5, 644 (2020). https://doi.org/10.1016/j.bioactmat.2020.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C. H. Tsai, R. M. Lin, C. P. Ju, et al., Biomaterials 29, 984 (2008). https://doi.org/10.1016/j.biomaterials.2007.10.014

    Article  CAS  PubMed  Google Scholar 

  20. W. L. Hill, G. T. Faust, D. S. Reynolds, et al., Am. J. Sci. 242, 457 (1944). https://doi.org/10.2475/ajs.242.9.45721

    Article  CAS  Google Scholar 

  21. M. A. Goldberg, V. V. Smirnov, O. S. Antonova, et al., Mendeleev Commun. 28, 329 (2018). https://doi.org/10.1016/j.mencom.2018.05.034

    Article  CAS  Google Scholar 

  22. E. Klapkova, M. Nescakova, P. Melichercik, et al., Folia Microbiol. 65, 475 (2020). https://doi.org/10.1007/s12223-019-00752-w

    Article  CAS  Google Scholar 

  23. C. Cervera, X. Castaneda, C. G. de la Maria, et al., Clin. Infect. Dis. 58, 1668 (2014). https://doi.org/10.1093/cid/ciu183

    Article  CAS  PubMed  Google Scholar 

  24. U. Joosten, A. Joist, G. Gosheger, et al., Biomaterials 26, 5251 (2005). https://doi.org/10.1016/j.biomaterials.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  25. E. V. Shelekhov and T. A. Sviridova, Programs for X‑Ray Analysis of Polycrystals (2000).

  26. Y. Abe, T. Kokubo, and T. Yamamuro, J. Mater. Sci.: Mater. Med. 1, 233 (1990). https://doi.org/https://doi.org/10.1007/BF00701082

    CAS  Google Scholar 

  27. V. N. Kazaikin, V. O. Ponomarev, A. S. Vokhmintsev, et al. Prakt. Med. 1, 85 (2016).

    Google Scholar 

  28. V. Komlev, M. Mastrogiacomo, R. Pereira, et al., Eur. Cells Mater. 19, 136 (2010). https://doi.org/10.22203/ecm.v019a14

    Article  CAS  Google Scholar 

  29. C. Großardt, A. Ewald, L. M. Grover, et al., Tissue Eng. A 16, 3687 (2010). https://doi.org/10.1089/ten.tea.2010.0281

    Article  CAS  Google Scholar 

  30. N. Ostrowski, A. Roy, and P. N. Kumta, ACS Biomater. Sci. Eng. 2, 1067 (2016). https://doi.org/10.1021/acsbiomaterials.6b00056

    Article  CAS  PubMed  Google Scholar 

  31. S. Kannan, I. A. F. Lemos, J. H. G. Rocha, et al., J. Solid State Chem. 178, 3190 (2005). https://doi.org/10.1016/j.jssc.2005.08.003

    Article  CAS  Google Scholar 

  32. A. A. Chaudhry, J. Goodall, M. Vickers, et al., J. Mater. Chem. 18, 5900 (2008). https://doi.org/10.1039/b807920j

    Article  CAS  Google Scholar 

  33. E. Vorndran, A. Ewald, F. A. Muller, et al., J. Mater. Sci.: Mater. Med. 22, 429 (2011). https://doi.org/10.1007/s10856-010-4220-4

    Article  CAS  Google Scholar 

  34. G. Chen, B. Liu, H. Liu, et al., Orthop. Traumat.: Surg. Res. 104, 1271 (2018). https://doi.org/10.1016/j.otsr.2018.07.007

    Article  Google Scholar 

  35. Y. Sakamoto, H. Ochiai, I. Ohsugi, et al., J. Craniofacial Surgery 24, 1447 (2013). https://doi.org/10.1097/SCS.0b013e31829972de

    Article  Google Scholar 

  36. G. Mestres and M. P. Ginebra, Acta Biomater. 7, 1853 (2011). https://doi.org/10.1016/j.actbio.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  37. V. Uskoković, V. Graziani, V. M. Wu, et al., Mater. Sci. Eng. C 94, 798 (2019). https://doi.org/10.1016/j.msec.2018.10.028

    Article  CAS  Google Scholar 

  38. V. V. Smirnov, D. R. Khayrutdinova, S. V. Smirnov, et al., Dokl. Chem. 485, 100 (2019). https://doi.org/10.1134/S0012500819030029

    Article  CAS  Google Scholar 

  39. E. H. Schemitsch, J. Orthop. Trauma 31, 20 (2017). https://doi.org/10.1097/BOT.0000000000000978

    Article  Google Scholar 

Download references

Funding

This work was supported by state assignment no. 075-00328-21-00 for the Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Krokhicheva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

This paper was published further to the Sixth Interdisciplinary Scientific Forum with the International Participation “Novel Materials and Promising Technology,” Moscow, November 23–26, 2020. https://n-materials.ru.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krokhicheva, P.A., Gol’dberg, M.A., Khairutdinova, D.R. et al. Bone Cements Based on Struvite: The Effect of Vancomycin Loading and Assessment of Biocompatibility and Osteoconductive Potentials In Vivo. Russ. J. Inorg. Chem. 66, 1079–1090 (2021). https://doi.org/10.1134/S0036023621080118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621080118

Keywords:

Navigation