Skip to main content
Log in

Synthesis and Deep Purification of Tin Tetrachloride

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The results of development of physicochemical fundamentals for the synthesis and deep purification of tin tetrachloride have been described. The samples of SnCl4 have been prepared from elements in a specially designed quartz installation. Prepared SnCl4 has been purified by rectification on a perforated-plate column. It has been revealed by mass spectrometry that the content of lead admixture after SnCl4 rectification decreases from 120 to 2 ppm, and the content of admixtures of other metals decreases considerably. Separation factors in liquid–vapor system for hardly separable admixtures have been calculated. The purity of SnCl4 samples has been confirmed by IR and Raman spectroscopy. The prepared SnCl4 samples contained 10–4 wt % of admixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. F. Win, S. G. Teoh, and E. Yousif, Asian J. Chem. 25, 9164 (2013). https://doi.org/10.14233/ajchem.2013.15086

    Article  CAS  Google Scholar 

  2. A. S. Antsyshkina, G. G. Sadikov, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 56, 530 (2011). https://doi.org/10.1134/S0036023611040036

    Article  CAS  Google Scholar 

  3. P. S. Radulov, Yu. Yu. Belyakova, A. A. Demina, et al., Russ. Chem. Bull. 68, 1289 (2019). https://doi.org/10.1007/s11172-019-2555-7

    Article  CAS  Google Scholar 

  4. V. S. Popov, V. G. Sevast’yanov, E. P. Simonenko, et al., Usp. Khim. Khim. Tekhnol. 24, 103 (2010).

    Google Scholar 

  5. N. V. Chizhova, O. V. Mal’tseva, N. Z. Mamardashvili, and A. V. Zav’yalov, Russ. J. Inorg. Chem. 62, 683 (2017). https://doi.org/10.1134/S0036023617050072

    Article  CAS  Google Scholar 

  6. E. Yousif, B. I. Mehdi, R. Yusopet, et al., J. Taibah Univ. Sci. 8, 276 (2014). https://doi.org/10.1016/j.jtusci.2014.01.005

    Article  Google Scholar 

  7. S. Osada, J. Nishikawa, T. Nakanish, et al., Toxicol. Lett. 155, 329 (2005). https://doi.org/10.1016/j.toxlet.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  8. E. C. Jeyaseelan and S. Tharmila, and K. Niranjan, Spectrochim. Acta, A 61, 77 (2005). https://doi.org/10.1016/j.saa.2004.03.018

    Article  CAS  Google Scholar 

  9. N. Wasi, H. B. Singh, A. Gajanana, and A. N. Raichowdhary, Inorg. Chim. Acta 135, 133 (1987). https://doi.org/10.1016/S0020-1693(00)83277-6

    Article  CAS  Google Scholar 

  10. A. K. Saxena, J. K. Koacher, and J. P. Tandon, and S. R. Das, J. Toxicol. Environ. Health 10, 709 (1982). https://doi.org/10.1080/15287398209530289

    Article  CAS  PubMed  Google Scholar 

  11. E. Yousif, J. King Saud Univ. Sci. 24, 167 (2012). https://doi.org/10.1016/j.jksus.2010.12.002

    Article  Google Scholar 

  12. E. Yousif, Y. Farina, A. Graisa, et al., Iran J. Chem. Chem. Eng. 30, 67 (2011). https://doi.org/10.30492/IJCCE.2011.6287

    Article  CAS  Google Scholar 

  13. A. B. Ferreira, A. Lemos Cardoso, and M. J. Silva, Int. Schol. Res. Not. 2012, 142857 (2012). https://doi.org/10.5402/2012/142857

    Article  CAS  Google Scholar 

  14. K. D. Jung, O. S. Joo, S. H. Han, et al., Catal. Lett. 35, 303 (1995). https://doi.org/10.1007/BF00807187

    Article  CAS  Google Scholar 

  15. W. Pilgrim and P. V. Murphy, Org. Chem. 75, 6747 (2010). https://doi.org/10.1021/jo101090f

    Article  CAS  Google Scholar 

  16. X. Li, J. Pankow, and Y. Yan, MRS Online Proc. Libr. 1165, 604 (2009). https://doi.org/10.1557/PROC-1165-M06-04

    Article  Google Scholar 

  17. M. Yavari, F. Ebadi, S. Meloni, et al., J. Mater. Chem. 7, 23838 (2019). https://doi.org/10.1039/C9TA01744E

    Article  CAS  Google Scholar 

  18. R. G. Dhere, H. R. Moutinho, S. Asher, et al., AIP Conf. Proc. 462, 242 (1999). https://doi.org/10.1063/1.57901

    Article  CAS  Google Scholar 

  19. B. D. Stepin, I. G. Gorshtein, G. Z. Blyum, et al., Methods for Obtaining Highly Pure Inorganic Substances (Khimiya, Leningrad, 1960) [in Russian].

    Google Scholar 

  20. G. G. Devyatykh and M. F. Churbanov, Methods for Obtaining Substances of Special Purity (Znanie, Moscow, 1976) [in Russian].

    Google Scholar 

  21. L. A. Nisel’son, Interphase Distribution Coefficients (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  22. CRC Handbook of Chemistry and Physics, Ed. by D. R. Lide (CRC press, 2004).

    Google Scholar 

  23. M. N. Brekhovskikh, M. V. Mastryukov, P. V. Kornev, et al., Inorg. Mater. 55, 974 (2019). https://doi.org/10.1134/S0020168519090012

    Article  CAS  Google Scholar 

  24. H. L. Welsh, M. F. Crawford, and G. D. Scott, J. Chem. Phys. 16, 97 (1948). https://doi.org/10.1063/1.1746824

    Article  CAS  Google Scholar 

  25. D. A. Long, T. V. Spencer, D. N. Waters, et al., Proc. R. Soc. London, Ser. A 240, 499 (1957). https://doi.org/10.1098/rspa.1957.0103

    Article  CAS  Google Scholar 

  26. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd Ed. (Wiley Interscience, New York, 1977).

    Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 19-33-90217) in the part of synthesis and purification and by the State assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the part of study of properties using equipment of the Shared Facility Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, and the Prokhorov Institute of General Physics, Russian Academy of Sciences, and partially supported by the Ministry Science and Higher Education of Russia (project no. АААА-А19-119101590111-2). Raman and IR spectra were obtained using equipment of the Shared Facility Center, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Brekhovskikh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastryukov, M.V., Demina, L.I., Moiseeva, L.V. et al. Synthesis and Deep Purification of Tin Tetrachloride. Russ. J. Inorg. Chem. 66, 963–968 (2021). https://doi.org/10.1134/S003602362107007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362107007X

Keywords:

Navigation