Skip to main content
Log in

Bi- and Tetranuclear Antimony(III) Bromide Complexes with Alkanediyl-bis(3-methylpyridinium) Cations

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Polynuclear bromoantimonates(III) with alkanediyl-bis(3-methylpyridinium) cations (3-MePy\({\text{C}}_{n}^{{2 + }}\))—(3-MePyC2)3[Sb2Br9]2 (1), (3-MePyC3)2[β-Sb4Br16] (2), and (3-MePyC4)2[α-Sb4Br16] (3)—and bromobismuthate(III) (3-MePyC3)3[Bi2Br9]2 (4) have been synthesized by reacting solutions of Sb2O3 (Bi2O3) in HBr with bromides of the corresponding organic cations. Differences in the structure between compounds 13 and bromobismuthates with analogous cations (4 and previously studied compounds) have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. L.-M. Wu, X.-T. Wu, and L. Chen, Coord. Chem. Rev. 253, 2787 (2009). https://doi.org/10.1016/J.CCR.2009.08.003

    Article  CAS  Google Scholar 

  2. S. A. Adonin, M. N. Sokolov, and V. P. Fedin, Russ. J. Inorg. Chem. 62, 1789 (2017). https://doi.org/10.1134/S0036023617140029

    Article  CAS  Google Scholar 

  3. P. A. Buikin, A. Y. Rudenko, A. E. Baranchikov, et al., Russ. J. Coord. Chem. 44, 373 (2018). https://doi.org/10.1134/S1070328418060015

    Article  CAS  Google Scholar 

  4. V. Y. Kotov, A. B. Ilyukhin, N. P. Simonenko, et al., Polyhedron 137, 122 (2017). https://doi.org/10.1016/J.POLY.2017.08.016

    Article  CAS  Google Scholar 

  5. V. V. Sharutin, O. K. Sharutina, R. M. Khisamov, et al., Russ. J. Inorg. Chem. 62, 766 (2017). https://doi.org/10.1134/S0036023617060201

    Article  CAS  Google Scholar 

  6. V. V. Sharutin, I. V. Yegorova, N. N. Klepikov, et al., Russ. J. Inorg. Chem. 54, 52 (2009). https://doi.org/10.1134/S0036023609010124

    Article  Google Scholar 

  7. V. V. Sharutin, I. V. Egorova, O. K. Sharutina, et al., Russ. J. Coord. Chem. 30, 874 (2004). https://doi.org/10.1007/s11173-005-0042-1

    Article  CAS  Google Scholar 

  8. G. A. Bowmaker, P. C. Junk, A. M. Lee, et al., Aust. J. Chem. 51, 293 (1998). https://doi.org/10.1071/C97036

    Article  CAS  Google Scholar 

  9. G. A. Bowmaker, J. M. Harrowfield, P. C. Junk, et al., Aust. J. Chem. 51, 285 (1998). https://doi.org/10.1071/C97035

    Article  CAS  Google Scholar 

  10. M. Wojtaś, R. Jakubas, and J. Baran, Vib. Spectrosc. 39, 23 (2005). https://doi.org/10.1016/J.VIBSPEC.2004.10.004

    Article  Google Scholar 

  11. B. Kulicka, T. Lis, V. Kinzhybalo, et al., Polyhedron 29, 2014 (2010). https://doi.org/10.1016/J.POLY.2010.03.017

    Article  CAS  Google Scholar 

  12. M. Wojtaś, R. Jakubas, Z. Ciunik, et al., J. Solid State Chem. 177, 1575 (2004). https://doi.org/10.1016/J.JSSC.2003.12.011

    Article  Google Scholar 

  13. A. M. Goforth, L. R. Peterson, M. D. Smith, et al., J. Solid State Chem. 178, 3529 (2005). https://doi.org/10.1016/j.jssc.2005.09.010

    Article  CAS  Google Scholar 

  14. H. Krautscheid, Z. Anorg. Allg. Chem. 621, 2049 (1995). https://doi.org/10.1002/zaac.19956211212

    Article  CAS  Google Scholar 

  15. O. Toma, N. Mercier, M. Allain, et al., CrystEngComm 15, 8565 (2013). https://doi.org/10.1039/c3ce41579a

    Article  CAS  Google Scholar 

  16. J. Jóźków, W. Medycki, J. Zaleski, et al., Phys. Chem. Chem. Phys. 3, 3222 (2001). https://doi.org/10.1039/b102697f

    Article  CAS  Google Scholar 

  17. D. B. Mitzi, Inorg. Chem. 39, 6107 (2000). https://doi.org/10.1021/ic000794i

    Article  CAS  PubMed  Google Scholar 

  18. N. Leblanc, N. Mercier, L. Zorina, et al., J. Am. Chem. Soc. 133, 14924 (2011). https://doi.org/10.1021/ja206171s

    Article  CAS  PubMed  Google Scholar 

  19. W. Bi, N. Leblanc, N. Mercier, et al., Chem. Mater. 21, 4099 (2009). https://doi.org/10.1021/cm9016003

    Article  CAS  Google Scholar 

  20. M. Wojta, G. Bator, R. Jakubas, et al., J. Phys. Condens. Matter 15, 5765 (2003). https://doi.org/10.1088/0953-8984/15/33/310

    Article  Google Scholar 

  21. A. Piecha-Bisiorek, R. Jakubas, W. Medycki, et al., J. Phys. Chem. A 118, 3564 (2014). https://doi.org/10.1021/jp501331c

    Article  CAS  PubMed  Google Scholar 

  22. N. Mercier, Eur. J. Inorg. Chem. 2013, 19 (2013). https://doi.org/10.1002/ejic.201201125

    Article  CAS  Google Scholar 

  23. W. Zhang, Z. Sun, J. Zhang, et al., J. Mater. Chem. C 5, 9967 (2017). https://doi.org/10.1039/c7tc02721d

    Article  CAS  Google Scholar 

  24. A. Gagor, M. Weclawik, B. Bondzior, et al., CrystEngComm 17, 3286 (2015). https://doi.org/10.1039/C5CE00046G

    Article  CAS  Google Scholar 

  25. L. A. Frolova, D. V. Anokhin, A. A. Piryazev, et al., J. Phys. Chem. Lett. 8, 67 (2017). https://doi.org/10.1021/acs.jpclett.6b02594

    Article  CAS  PubMed  Google Scholar 

  26. L. A. Frolova, D. V. Anokhin, A. A. Piryazev, et al., J. Phys. Chem. Lett. 8, 1651 (2017). https://doi.org/10.1021/acs.jpclett.7b00210

    Article  CAS  PubMed  Google Scholar 

  27. N. A. Belich, A. S. Tychinina, V. V. Kuznetsov, et al., Mendeleev Commun. 28, 487 (2018). https://doi.org/10.1016/j.mencom.2018.09.011

    Article  CAS  Google Scholar 

  28. S. A. Fateev, A. A. Petrov, V. N. Khrustalev, et al., Chem. Mater. 30, 5237 (2018). https://doi.org/10.1021/acs.chemmater.8b01906

    Article  CAS  Google Scholar 

  29. A. A. Petrov, I. P. Sokolova, N. A. Belich, et al., J. Phys. Chem. C 121, 20739 (2017). https://doi.org/10.1021/acs.jpcc.7b08468

    Article  CAS  Google Scholar 

  30. N. N. Shlenskaya, N. A. Belich, M. Gratzel, et al., J. Mater. Chem. A 6, 1780 (2018). https://doi.org/10.1039/c7ta10217h

    Article  CAS  Google Scholar 

  31. A. M. Ganose, C. N. Savory, and D. O. Scanlon, Chem. Commun. 53, 20 (2017). https://doi.org/10.1039/C6CC06475B

    Article  CAS  Google Scholar 

  32. N. Mercier, N. Louvain, and W. Bi, CrystEngComm 11, 720 (2009). https://doi.org/10.1039/b817891g

    Article  CAS  Google Scholar 

  33. S. A. Adonin, I. D. Gorokh, A. S. Novikov, et al., Polyhedron 139, (2018). https://doi.org/10.1016/j.poly.2017.11.002

  34. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv. 71, 3 (2015). https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  35. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  36. I. A. Ahmed, R. Blachnik, and H. Reuter, Z. Anorg. Allg. Chem. 627, 2057 (2001). https://doi.org/10.1002/1521-3749(200109)627:9<2057::AID-ZAAC2057>3.0.CO;2-7

    Article  CAS  Google Scholar 

  37. P. Szklarz, R. Jakubas, A. Piecha-Bisiorek, et al., Polyhedron 139, 249 (2018). https://doi.org/10.1016/J.POLY.2017.10.030

    Article  CAS  Google Scholar 

  38. M. Hall, M. Nunn, M. J. Begley, et al., J. Chem. Soc., Dalton. Trans, 6, 1231 (1986). https://doi.org/10.1039/DT9860001231

  39. S. K. Porter and R. A. Jacobson, J. Chem. Soc. A. Inorg., Phys. Theor. Chem., 1359 (1970). https://doi.org/10.1039/J19700001359

  40. V. V. Sharutin, I. V. Egorova, M. V. Levchuk, et al., Russ. J. Coord. Chem. 28, 613 (2002). https://doi.org/10.1023/A:1020082731096

    Article  CAS  Google Scholar 

  41. B. Kou, W. Zhang, C. Ji, et al., Chem. Commun. 55, 14174 (2019). https://doi.org/10.1039/C9CC05365D

    Article  CAS  Google Scholar 

  42. K. A. Al-Farhan and A. I. Al-Wassil, J. Chem. Crystallogr. 25, 841 (1995). https://doi.org/10.1007/BF01671080

    Article  CAS  Google Scholar 

  43. V. V. Sharutin, I. V. Egorova, O. K. Sharutina, et al., Russ. J. Coord. Chem. 34, 461 (2008). https://doi.org/10.1134/S1070328408060122

    Article  CAS  Google Scholar 

  44. A. L. Rheingold, A. D. Uhler, and A. G. Landers, Inorg. Chem. 22, 3255 (1983). https://doi.org/10.1021/ic00164a018

    Article  CAS  Google Scholar 

  45. V. V. Sharutin, A. I. Poddel’sky, and O. K. Sharutina, Russ. J. Coord. Chem. 46, 663 (2020). https://doi.org/10.1134/S1070328420100012

    Article  CAS  Google Scholar 

  46. L. S. Okhlopkova, A. I. Poddel’sky, I. V. Smolyaninov, et al., Russ. J. Coord. Chem. 46, 386 (2020). https://doi.org/10.1134/S107032842005005X

    Article  CAS  Google Scholar 

  47. L. S. Okhlopkova, I. V. Smolyaninov, E. V. Baranov, et al., Russ. J. Coord. Chem. 46, 466 (2020). https://doi.org/10.1134/S1070328420060081

    Article  Google Scholar 

  48. V. V. Sharutin, O. K. Sharutina, and A. N. Efremov, J. Struct. Chem. 61, 1414 (2020). https://doi.org/10.1134/S0022476620090085

    Article  CAS  Google Scholar 

  49. V. V. Sharutin, O. K. Sharutina, A. N. Efremov, et al., Russ. J. Inorg. Chem. 65, 992 (2020).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-33-70010 “Stability”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Adonin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usol’tsev, A.N., Sokolov, M.N., Fedin, V.P. et al. Bi- and Tetranuclear Antimony(III) Bromide Complexes with Alkanediyl-bis(3-methylpyridinium) Cations. Russ. J. Inorg. Chem. 66, 827–833 (2021). https://doi.org/10.1134/S003602362106019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362106019X

Keywords:

Navigation