Skip to main content
Log in

Selective Radiosensitizing Effect of Amorphous Hafnia Modified with Organic Quantum Dots on Normal and Malignant Cells

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract—Aqueous sols of hafnia modified with organic quantum dots, which exhibit pronounced luminescent properties, have been synthesized by hydrothermal treatment of amorphous hydrated hafnium dioxide in the presence of ammonium citrate. It has been shown that malignant human cells of the U-251, MCF-7, and MNNG/Hos lines take up the resulting nanoparticles to a significantly higher degree than human mesenchymal stem cells. Under X-ray radiation (15 Gy), the resulting nanoparticles exhibit radiosensitizing properties against malignant cells of the U-251 and MCF-7 lines, significantly reducing their viability. On the contrary, in relation to human osteosarcoma cells of the MNNG/Hos line, the radiosensitizing properties of the obtained material are much less pronounced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Giacobbe and D. N. Dunning, Nucl. Sci. Eng. 4, 467 (1958). https://doi.org/10.13182/NSE58-A25543

    Article  CAS  Google Scholar 

  2. G. W. Cunningham, A. K. Foulds, D. L. Keller, and W. E. Ray, Nucl. Sci. Eng. 4, 449 (1958). https://doi.org/10.13182/NSE58-A25541

    Article  CAS  Google Scholar 

  3. T. P. Smirnova, L. V. Yakovkina, and V. N. Kitchai, J. Phys. Chem. Solids 69, 685 (2008). https://doi.org/10.1016/j.jpcs.2007.07.123

    Article  CAS  Google Scholar 

  4. B. H. Lee, L. Kang, R. Nieh, et al., Appl. Phys. Lett. 76, 1926 (2000). https://doi.org/10.1063/1.126214

    Article  CAS  Google Scholar 

  5. C. E. Curtis, L. M. Doney, and J. R. Johnson, J. Am. Ceram. Soc. 37, 458 (1954). https://doi.org/10.1111/j.1151-2916.1954.tb13977.x

    Article  CAS  Google Scholar 

  6. L. Maggiorella, G. Barouch, L. Levy, et al., Future Oncol. 8, 1167 (2012). https://doi.org/10.2217/fon.12.96

    Article  CAS  PubMed  Google Scholar 

  7. Y. Li, Y. Qi, H. Zhang, et al., Biomaterials 226, 119538 (2020). https://doi.org/10.1016/j.biomaterials.2019.119538

    Article  CAS  PubMed  Google Scholar 

  8. C. Rancoule, N. Magné, A. Vallard, et al., Cancer Lett. 375, 256 (2016). https://doi.org/10.1016/j.canlet.2016.03.011

    Article  CAS  PubMed  Google Scholar 

  9. Y. Wan and X. Zhou, RSC Adv. 7, 7763 (2017). https://doi.org/10.1039/C6RA26663K

  10. P. E. Meskin, F. Yu. Sharikov, V. K. Ivanov, et al., Mater. Chem. Phys. 104, 439 (2007). https://doi.org/10.1016/j.matchemphys.2007.03.042

    Article  CAS  Google Scholar 

  11. V. K. Ivanov, G. P. Kopitsa, A. Ye. Baranchikov, et al., Russ. J. Inorg. Chem. 54, 2091 (2009). https://doi.org/10.1134/S0036023609140022

    Article  Google Scholar 

  12. V. K. Ivanov, G. P. Kopitsa, O. S. Ivanova, et al., J. Phys. Chem. Solids 75, 296 (2014). https://doi.org/10.1016/j.jpcs.2013.10.006

    Article  CAS  Google Scholar 

  13. G. S. Taran, A. E. Baranchikov, O. S. Ivanova, et al., Russ. J. Inorg. Chem. 65, 800 (2020). https://doi.org/10.1134/S0036023620060236

    Article  CAS  Google Scholar 

  14. J. Buha, D. Arcon, M. Niederberger, and I. Djerdj, Phys. Chem. Chem. Phys. 12, 15537 (2010). https://doi.org/10.1039/C0CP01298J

    Article  CAS  PubMed  Google Scholar 

  15. M. S. Masoud, G. B. Mohamed, Y. H. Abdul-Razek, et al., J. Korean Chem. Soc. 46, 99 (2002). https://doi.org/10.5012/JKCS.2002.46.2.099

    Article  CAS  Google Scholar 

  16. N. M. Zholobak, A. L. Popov, A. B. Shcherbakov, et al., Beilstein J. Nanotechnol. 7, 1905 (2016). https://doi.org/10.3762/bjnano.7.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D. Qu, M. Zheng, L. Zhang, et al., Sci. Rep. 4, 5294. https://doi.org/10.1038/srep05294

  18. Y. Guo, Z. Wang, H. Shao, et al., Carbon 52, 1016 (2013). https://doi.org/10.1016/j.carbon.2012.10.028

    Article  CAS  Google Scholar 

  19. P. H. Kumar, S. Vidya, S. S. Kumar, et al., J. Asian Ceram. Soc. 3, 64 (2015). https://doi.org/10.1016/j.jascer.2014.10.009

    Article  Google Scholar 

  20. N. Rochat, K. Dabertrand, V. Cosnier, et al., Phys. Status Solidi C 0(8), 2961 (2003). https://doi.org/10.1002/pssc.200303858

    Article  CAS  Google Scholar 

  21. N. Popova, A. Popov, A. Ermakov, et al., Molecules 25, 2957 (2020). https://doi.org/10.3390/molecules25132957

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

The work was supported through a grant of the President of the Russian Federation (grant no. MK-518.2019.3) and performed with the use of equipment of the Shared Facility Center for Physical Methods of Investigation, IGIC RAS, supported in the framework of the State assignment of IGIC RAS in the field of basic research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Popova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, N.P., Taran, G.S., Popov, A.L. et al. Selective Radiosensitizing Effect of Amorphous Hafnia Modified with Organic Quantum Dots on Normal and Malignant Cells. Russ. J. Inorg. Chem. 66, 931–937 (2021). https://doi.org/10.1134/S0036023621060164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621060164

Keywords:

Navigation