Skip to main content
Log in

Effect of Molar Ratios in the Crystallochemical Structure of Biomimetic Nanostructured Hydroxyapatite on the Characteristics of the Product

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The results of the study of effects of molar ratios in the crystallochemical structure of biomimetic hydroxyapatite (BMHAP) on the physicochemical characteristics of the product are presented. With an increase in molar ratio in the range 1.50–1.67, there is an increase in the unit cell parameters a and c, while the average crystallite size increases from 7.52 to 70.30 nm. Particles of all samples in aqueous suspensions (pH 7) are negatively charged. The trend of the zeta potential of the synthesized powders in the range of investigated molar ratios is elucidated. The bioactivity of the samples is evaluated. All BMHAP samples have a higher bioresorbability as compared to unmodified stoichiometric hydroxyapatite, correlating well with the molar ratio in the structure of the products

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. Liangzhi, Z. Weibin, and S. Yuhui, RSC Adv. 6, 114707 (2016). https://doi.org/10.1039/C6RA24469F

  2. M. Trunec and Z. Chlup, Ceram. Int. 43, 11265 (2017). https://doi.org/10.1016/j.ceramint.2017.05.177

    Article  CAS  Google Scholar 

  3. D. S. Larionov, M. A. Kuzina, P. V. Evdokimov, et al., Zh. Neorg. Khim. 65, 309 (2020). https://doi.org/10.31857/S0044457X20030071

    Article  Google Scholar 

  4. O. A. Golovanova, Zh. Neorg. Khim. 65, 302 (2020). https://doi.org/10.31857/S0044457X20030046

    Article  Google Scholar 

  5. J. Kolmas, S. Krukowski, A. Laskus, et al., Ceram. Int. 42, 2472 (2016). https://doi.org/10.1016/j.ceramint.2015.10.048

    Article  CAS  Google Scholar 

  6. A. Szczes, L. Holysz, and E. Chibowski, Adv. Coll. Interf. Sci. 249, 321 (2017). https://doi.org/10.1016/j.cis.2017.04.007

    Article  CAS  Google Scholar 

  7. N. Eliaz and N. Metoki, Materials 10, 334 (2017). https://doi.org/10.3390/ma10040334

    Article  CAS  PubMed Central  Google Scholar 

  8. A. A. Hendi, J. Alloys Compd. 712, 147 (2017). https://doi.org/10.1016/j.jallcom.2017.04.021

    Article  CAS  Google Scholar 

  9. M. Vallet-Regí and D. Arcos, J. Mater. Chem. 15, 1509 (2005). https://doi.org/10.1039/B414143A

    Article  Google Scholar 

  10. T. V. Safronova and V. I. Putlyaev, Nanosist.: Fiz., Khim., Mat. 4, 24 (2013).

    Google Scholar 

  11. Nanoscience & Nanotechnology Series, Chapter 1: Biological Apatites in Bone and Teeth (Roy. Soc. of Chem. Cambridge, 2008), p. 1. https://doi.org/10.1039/9781847558923-00001

  12. Nanoscience & Nanotechnology Series, Chapter 3: Biomimetic Nanoapatites on Bioceramics (Roy. Soc. of Chem. Cambridge, 2008), p. 61. https://doi.org/10.1039/9781847558923-00061

  13. A. J. Salinas, P. Esbrit, and M. Vallet-Regí, Biomater. Sci. 1, 40 (2013). https://doi.org/10.1039/C2BM00071G

    Article  CAS  PubMed  Google Scholar 

  14. K. Guth, C. Campion, T. Buckland, et al., Adv. Eng. Mater. 12, B113 (2010). https://doi.org/10.1002/adem.200980026

    Article  CAS  Google Scholar 

  15. K. Cameron, P. Travers, C. Chander, et al., J. Biomed. Mater. Res. A 101, 13 (2013). https://doi.org/10.1002/jbm.a.34261

    Article  CAS  PubMed  Google Scholar 

  16. V. Putlayev, A. Veresov, M. Pulkin, et al., Mat.-wiss. Werkstofftech. 37, 416 (2006). https://doi.org/10.1002/mawe.200600007

    Article  CAS  Google Scholar 

  17. G. Munir, G. Koller, L. Di Silvio, et al., J. R. Soc. Interface 8, 678 (2011). https://doi.org/10.1098/rsif.2010.0548

    Article  CAS  PubMed  Google Scholar 

  18. E. Landi, G. Celotti, G. Logroscino, et al., J. Eur. Ceram. Soc. 23, 2931 (2003). https://doi.org/10.1016/S0955-2219(03)00304-2

    Article  CAS  Google Scholar 

  19. E. Landi, J. Uggeri, S. Sprio, et al., J. Biomed. Mater. Res. A 94, 59 (2010). https://doi.org/10.1002/jbm.a.32671

    Article  CAS  PubMed  Google Scholar 

  20. E. Boanini, M. Gazzano, and A. Bigi, Acta Biomater. 6, 1882 (2010). https://doi.org/10.1016/j.actbio.2009.12.041

    Article  CAS  PubMed  Google Scholar 

  21. M. Yu. Koroleva, E. Yu. Karakatenko, and E. V. Yurtov, Kolloid. Zh. 82, 324 (2020). https://doi.org/10.31857/S0023291220030052

    Article  Google Scholar 

  22. M. A. Trubitsyn, Khoang V’et Khung, and L. V. Furda, Vest. Tekhnol. Univ. 23, 19 (2020).

    Google Scholar 

  23. Y.-J. Wu, Y.-H. Tseng, and J. C. C. Chan, Cryst. Growth Des. 10, 4240 (2010). https://doi.org/10.1021/cg100859m

    Article  CAS  Google Scholar 

  24. Y.-Y. Hu, A. Rawal, and K. Schmidt-Rohr, Proc. Nat. Acad. Sci. 107, 22425 (2010). https://doi.org/10.1073/pnas.1009219107

    Article  CAS  PubMed  Google Scholar 

  25. N. R. Jana, L. Gearheart, and C. J. Murphy, J. Phys. Chem. B 105, 4065 (2001). https://doi.org/10.1021/jp0107964

    Article  CAS  Google Scholar 

  26. V. H. Hoang, M. A. Troubitsin, L. V. Furda, et al., JBBBE 47, 1 (2020). www.scientific.net/JBBBE.47.1

  27. M. Troubitsin, V. H. Hoang, and L. Furda, Bull. Belgorod State Technol. Univ. 5, 106 (2020). https://doi.org/10.34031/2071-7318-2020-5-3-106-113

  28. B. D. Cullity and J. W. Weymouth, Am. J. Phys. 25, 394 (1957). https://doi.org/10.1119/1.1934486

    Article  Google Scholar 

  29. G. Singh, S. Singh, and S. Prakash, Surf. Coat. Technol. 205, 4814 (2011). https://doi.org/10.1016/j.surfcoat.2011.04.064

    Article  CAS  Google Scholar 

  30. G. Charlot, Les Methods de la Chimie Analytique: Analyse Quantitative Minerale (Masson, Paris, 1966; Moscow, 1966).

  31. D. Marchat, M. Zymelka, C. Coelho, et al., Acta Biomaterialia 9, 6992 (2013). https://doi.org/10.1016/j.actbio.2013.03.011

    Article  CAS  PubMed  Google Scholar 

  32. N. Y. Mostafa, H. M. Hassan, and O. H. Abd Elkader, J. Am. Ceram. Soc. 94, 1584 (2011). https://doi.org/10.1111/j.1551-2916.2010.04282.x

    Article  CAS  Google Scholar 

  33. M. Palard, E. Champion, and S. Foucaud, J. Solid State Chem. 181, 1950 (2008). https://doi.org/10.1016/j.jssc.2008.04.027

    Article  CAS  Google Scholar 

  34. P. Laquerriere, A. Grandjean-Laquerriere, S. Addadi-Rebbah, et al., Biomaterials 25, 2515 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.034

    Article  CAS  PubMed  Google Scholar 

  35. F. Lebre, R. Sridharan, M. J. Sawkins, et al., Sci. Rep. 7, 2922 (2017). https://doi.org/10.1038/s41598-017-03086-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

Research facilities of the “Technologies and Materials” of the Belgorod State University Share Facilities Center were used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Tham Hong.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubitsyn, M.A., Hung, H.V., Furda, L.V. et al. Effect of Molar Ratios in the Crystallochemical Structure of Biomimetic Nanostructured Hydroxyapatite on the Characteristics of the Product. Russ. J. Inorg. Chem. 66, 654–661 (2021). https://doi.org/10.1134/S0036023621050211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621050211

Keywords:

Navigation