Skip to main content
Log in

Stability of Co(III), Ni(II), and Cu(II) Complexes with 2-Furan- and 2-Thiophenecarboxyhydrazones of Pyridoxal 5-Phosphate in Neutral Aqueous Solutions

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The complexation of nickel(II), cobalt(III), copper(II) ions with 2-furan- and 2-thiophenecarbohydrazones of pyridoxal 5-phosphate in aqueous solutions was studied spectrophotometrically. The stoichiometries and conditional stability constants of the complexes at pH 7.4, T = 298.2 K, and I = 0.25 M were determined. In aqueous solutions, the coordination complexes under study contain one metal ion and two ligand molecules. For doubly charged metal cations, the conditional stability constants \(\log \beta _{2}^{'}\) lie in the range of 10.4–11, while those for Co(III) complexes lie in the range of 14.7–15.2. The influence of the nature of hydrazide residue on the stability of complexes of d-metal ions with hydrazones is found to be small. A preliminary analysis of the potential usefulness of the studied hydrazones as indicators of the presence of Co(III), Ni(II), Cu(II) ions in solutions is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. Kasimov, N. Kosheleva, P. Gunin, et al., Environ. Earth Sci. 75, 1283 (2016). https://doi.org/10.1007/s12665-016-6088-1

    Article  CAS  Google Scholar 

  2. Yu. N. Vodyanitskii and A. T. Savichev, Water Air Soil Pollut. 225, 1911 (2014). https://doi.org/10.1007/s11270-014-1911-3

    Article  CAS  Google Scholar 

  3. A. V. Zhulidov, R. D. Robarts, D. F. Pavlov, et al., Environ. Monit. Assess 181, 539 (2011). https://doi.org/10.1007/s10661-010-1848-y

    Article  CAS  PubMed  Google Scholar 

  4. L. Xu, W. Yan, F. Jiang, et al., J. Coast Conserv. 22, 209 (2018). https://doi.org/10.1007/s11852-016-0438-8

    Article  Google Scholar 

  5. A. V. Pulya, I. I. Seifullina, L. S. Skorokhod, et al., Russ. J. Inorg. Chem. 63, 1472 (2018). https://doi.org/10.1134/S003602361811013X

    Article  CAS  Google Scholar 

  6. I. Bulhac, O. Danilescu, A. Rija, et al., Russ. J. Coord. Chem. 43, 21 (2017). https://doi.org/10.1134/S1070328417010018

    Article  CAS  Google Scholar 

  7. U. P. Meshram, G. B. Pethe, A. R. Yaul, et al., Russ. J. Phis. Chem. A 91, 1877 (2017). https://doi.org/10.1134/S0036024417100259

    Article  CAS  Google Scholar 

  8. A. V. Pulya, I. I. Seifullina, L. S. Skorokhod, et al., Russ. J. Inorg. Chem. 61, 38 (2016). https://doi.org/10.7868/S0044457X16010207

    Article  CAS  Google Scholar 

  9. X. Su and I. Aprahamian, Chem. Soc. Rev. 43, 963 (2014). https://doi.org/10.1039/c3cs60385g

    Article  CAS  Google Scholar 

  10. L. N. Suvarapu, Y. K. Seo, S.-O. Baek, et al., E‑J. Chem. 9, 1288 (2012). https://doi.org/10.1155/2012/534617

    Article  CAS  Google Scholar 

  11. G. A. Gamov, M. N. Zavalishin, A. Y. Khokhlova, et al., J. Coord. Chem. 20, 3304 (2018). https://doi.org/10.1080/00958972.2018.1512708

    Article  CAS  Google Scholar 

  12. G. A. Gamov, M. N. Zavalishin, A. Y. Khokhlova, et al., Russ. J. Gen. Chem. 88, 436 (2018). https://doi.org/10.1134/S1070363218070149

    Article  Google Scholar 

  13. V. M. Shanbhag and A. E. Martell, Inorg. Chem. 29, 1023 (1990). https://doi.org/10.1021/ic00330a023

    Article  CAS  Google Scholar 

  14. B. Szpoganicz and A. E. Martell, Inorg. Chem. 25, 327 (1986). https://doi.org/10.1021/ic00223a019

    Article  CAS  Google Scholar 

  15. G. A. Gamov, I. A. Khodov, K. V. Belov, et al., J. Mol. Liq. 283, 825 (2019). https://doi.org/10.1016/j.molliq.2019.03.125

    Article  CAS  Google Scholar 

  16. M. F. Mouat and K. L. Manchester, Compar. Haematol. Int. 8, 58 (1998).

    Article  CAS  Google Scholar 

  17. S. N. Gridchin, L. A. Kochergina, and P. G. Kono-valov, Russ. J. Coord. Chem. 29, 868 (2003). https://doi.org/10.1023/B:RUCO.0000008399.53700.43

    Article  CAS  Google Scholar 

  18. V. Muraskova, N. Szabo, M. Pizla, et al., Inorg. Chim. Acta 461, 111 (2017). https://doi.org/10.1016/j.ica.2017.02.014

    Article  CAS  Google Scholar 

  19. F. Back, G. Oliveira, D. Roman, et al., Inorg. Chim. Acta 412, 6 (2014). https://doi.org/10.1016/j.ica.2013.12.008

    Article  CAS  Google Scholar 

  20. T. B. Murphy, D. K. Johnson, N. J. Rose, et al., Inorg. Chim. Acta 66, 67 (1982). https://doi.org/10.1016/S0020-1693(00)85778-3

    Article  Google Scholar 

  21. T. Filipsky, M. Riha, R. Hrdina, et al., Bioorg. Chem. 49, 1 (2013). https://doi.org/10.1016/j.bioorg.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  22. H. A. Goodwin, Top Curr. Chem. 234, 23 (2004). https://doi.org/10.1007/b95411

    Article  CAS  Google Scholar 

  23. K. J. Powell, P. L. Brown, R. H. Byrne, et al., Pure Appl. Chem. 85, 2249 (2013). https://doi.org/10.1351/PAC-REP-13-06-0

    Article  CAS  Google Scholar 

  24. P. L. Brown and C. Ekberg, Hydrolysis of Metal Ions (Wiley-VCH, 2016).

    Book  Google Scholar 

  25. R. S. Taylor and H. Diebler, Bio. Inorg. Chem. 6, 247 (1976). https://doi.org/10.1016/S0006-3061(00)80231-8

    Article  CAS  Google Scholar 

  26. B. I. Stepanov, Introduction to the Chemistry and Technology of Organic Dyes (Moscow, 1984) [in Russian].

    Google Scholar 

  27. A. N. Meshkov and G. A. Gamov, Talanta 198, 200 (2019). https://doi.org/10.1016/j.talanta.2019.01.107

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was conducted at the Research Institute for Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology, and supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 4.7305.2017/8.9) and the Council for Grants of the President of the Russian Federation (project no. 14.Z56.18.877-MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Zavalishin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Terpilovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavalishin, M.N., Gamov, G.A., Khokhlova, A.Y. et al. Stability of Co(III), Ni(II), and Cu(II) Complexes with 2-Furan- and 2-Thiophenecarboxyhydrazones of Pyridoxal 5-Phosphate in Neutral Aqueous Solutions. Russ. J. Inorg. Chem. 65, 119–125 (2020). https://doi.org/10.1134/S0036023620010209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620010209

Keywords:

Navigation