Abstract
This study investigates the effect of six different solvents (chloroform, tetrahydrofuran, dichloroethane, acetone, ethanol, and methanol) on the structure, dipole moment, frontier orbitals energies, reactivity parameters, and electronic spectrum of the carbyne complex trans-[ClRu(PH3)4(≡C–CH=CMe2)]2+ using B3LYP* quantum mechanical calculations. The Conductor-like Polarizable Continuum Model (CPCM) is used for calculation in solution phase. The PCM calculations are accompanied with SMD-Coulomb atomic radii. The effect of solvent on the dipole moment, energies of frontier orbitals, and wavenumber of the most intense electronic transition (λmax) of this complex is studied. The relationships between these parameters and solvent polarity functions including both the dielectric constant (ε) and refractive index (nD) of the liquid medium are investigated. Correlations of the calculated λmax with the Kirkwood–Bauer–Magat equation (KBM) and improved form of this equation are also studied. The natural transition orbitals (NTOs) are used for illustrating the nature of the most intense electronic transition in the studied complex.
Similar content being viewed by others
REFERENCES
Q. Yuan and F. Ding, Nanoscale 6, 12727 (2014).https://doi.org/10.1039/C4NR03757J
A. F. Hill, J. S. Ward, and Y. Xiong, Organometallics 34, 5057 (2015).https://doi.org/10.1021/acs.organomet.5b00635
E. O. Fischer, G. Kreis, C. G. Kreiter, et al., Angew. Chem. Int. Ed. 12, 564 (1973).https://doi.org/10.1002/anie.197305641
C. K. R. Depooeter, Chem. Rev. 81, 447 (1981).https://doi.org/10.1021/cr00045a002
S. G. Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon Press: Oxford, U.K., 1982; Vol. 8, p 40.
J. W.Herndon, Coord. Chem. Rev. 257, 2899 (2013).https://doi.org/10.1016/j.ccr.2013.05.011
J. W. Herndon, Coord. Chem. Rev. 377, 86 (2018).https://doi.org/10.1016/j.ccr.2018.08.007
R. E. D. Re and M. D. Hopkins, Coord. Chem. Rev. 249, 1396 (2005). .https://doi.org/10.1016/j.ccr.2005.03.011
J. W. Herndon, Coord. Chem. Rev. 243, 3 (2003).https://doi.org/10.1016/S0010-8545(02)00276-X
D. J. Mindiola, Acc. Chem. Res. 39, 813 (2006).https://doi.org/10.1021/ar0500113
R. L. Cordiner, P. A. Gugger, A. F. Hill, and A. C. Willis, Organometallics 28, 6632 (2009).https://doi.org/10.1021/om900868s
L. Colebatch, A. F. Hill, R. Shang, and A. C.Willis, Organometallics 29, 6482 (2010). .https://doi.org/10.1021/om1008296
J. W. Herndon, Coord. Chem. Rev. 272, 48 (2014). https://doi.org/10.1016/j.ccr.2014.02.026
J. W. Herndon, Coord. Chem. Rev. 286, 30 (2015).https://doi.org/10.1016/j.ccr.2014.09.021
D. A.Valyaev, K. I. Utegenov, V. V. Krivykh, et al., J. Organomet. Chem. 867, 353 (2018).https://doi.org/10.1016/j.jorganchem.2017.12.029
H. S. Kim and R. J. Angelici, Adv. Organomet. Chem. 27, 51 (1987).https://doi.org/10.1016/S0065-3055(08)60026-X
A. Mayr and H. Hoffmeister, Adv. Organomet. Chem. 32, 227 (1991).https://doi.org/10.1016/S0065-3055(08)60481-5
T. Bolano, M. A. Esteruelas, and E. Oñate, J. Organomet. Chem. 696, 3911 (2011).https://doi.org/10.1016/j.jorganchem.2011.04.029
W. Bai, K.-H. Lee, W. Y. Hung, et al., Organometallics 36, 657 (2017).https://doi.org/10.1021/acs.organomet.6b00860
H. Hashimoto and H. Tobita, Coord. Chem. Rev. 355, 362 (2018).https://doi.org/10.1016/j.ccr.2017.09.023
M. K. Shamami, R.Ghiasi, and M. D. Asli, J. Chin. Chem. Soc. 64, 522 (2017).https://doi.org/10.1002/jccs.201600855
M. K. Shamami and R. Ghiasi, J. Chin. Chem. Soc. 64, 651 (2017).https://doi.org/10.1002/jccs.201700020
L. Zhang, M. Fátima, C. G. d. Silva, et al., Organometallics 20, 2782 (2001).https://doi.org/10.1021/om001095g
J. M.Poblet, A. S. Rola, and W. M. Bénard, Chem. Phys. Lett. 126, 169 (1986).https://doi.org/10.1016/S0009-2614(86)80033-1
R. Ghiasi, J. Mol. Liq. 264, (2018).https://doi.org/10.1016/j.molliq.2018.05.068
M. Rahimi and R. Ghiasi, J. Mol. Liq. 265, (2018).https://doi.org/10.1016/j.molliq.2018.04.154
H. Ghobadi, R. Ghiasi, and S. Jamehbozorgi, J. Chin. Chem. Soc. 64, (2017).https://doi.org/10.1002/jccs.201600795
S. Rigaut, D. Touchard, and P. H. Dixneuf, Organometallics 22, 3980 (2003).https://doi.org/10.1021/om0304098
P. Selvarengan and P. Kolandaivel, J. Mol. Struct. Theochem. 617, 99 (2002).https://doi.org/10.1016/S0166-1280(02)00421-9
S. B. Allin, T. M.Leslie, and R. S. Lumpkin, Chem. Mater. 8, 428 (1996).https://doi.org/10.1021/cm950362j
A. J. A. Aquino, D. Tunega, G. Haberhauer, et al., J. Phys. Chem. A.106, 1862 (2002).https://doi.org/10.1021/jp013677x
A. H. E. M. Springborg, Specialist Periodical Reports: Chemical Modelling, Applications and Theory (Royal Society of Chemistry: Cambridge, UK, 2008), Vol. 5.
M. Rezazadeh, R. Ghiasi, and S. Jamehbozorgi, J. Struc. Chem. 59, 245 (2018).https://doi.org/10.1134/S0022476618010390
R. Ghiasi, F. Zafarniya, and S. Ketabi, Russ. J. Inorg. Chem. 62, 1371 (2017).https://doi.org/10.1134/S0036023617100096
H. Alavi and R. Ghiasi, J. Struc. Chem. 58, 30 (2017).https://doi.org/10.1134/S0022
F. Zafarniya, R. Ghiasi, and S. Jameh-Bozorghi, Phys. Chem. Liq. 55, 444 (2017).https://doi.org/10.1080/00319104.2016.1218877
F. Zafarnia, R. Ghiasi, and S. Jamehbozorgi, J. Struc. Chem. 58, 1324 (2017).https://doi.org/10.1134/S0022476617070083
F. Zafarniya, R. Ghiasi, and S. Jameh-Bozorgi, Phys. Chem. Liq. 55, (2017).https://doi.org/10.1080/00319104.2016.1218877
N. E. Fard, R. Fazaeli, and R. Ghiasi, Chem. Eng. Tech. 39, (2016).https://doi.org/10.1002/ceat.201500116
R. Ghiasi and A. Zamani, J. Chin. Chem. Soc. 64, (2017).https://doi.org/10.1002/jccs.201700172
R. Ghiasi, H. Pasdar, and S. Fereidoni, Russ. J. Inorg. Chem. 61, 327 (2016).https://doi.org/10.1134/S0036023616030104
A. Peikari, R. Ghiasi, and H. Pasdar, Russ. J. Phys. Chem. A 89, 250 (2015).https://doi.org/10.1134/S0036024415020260
R. Ghiasi, S. Abdolmohammadi, and S. Moslemizadeh, J. Chin. Chem. Soc. 62, (2015).https://doi.org/10.1002/jccs.201500249
M. Z. Fashami, R. Ghiasi, and H. Pasdar, J. Struct. Chem. 56, (2015).https://doi.org/10.1134/S0022476615080041
M. Rezazadeh, R. Ghiasi, and S. Jamehbozorgi, J. Appl. Spectrosc. 85, (2018).https://doi.org/10.1007/s10812-018-0683-8
N. Sadeghi, R. Ghiasi, R. Fazaeli, and S. Jamehbozorgi, J. Appl. Spectrosc. 83, (2017).https://doi.org/10.1007/s10812-017-0383-9
G. Song, Y. Su, R. A. Periana, et al., Angew. Chem. Int. Ed. 49, 912 (2010).https://doi.org/10.1002/anie.200905691
H. Wang, Y. Wang, K.-L. Han, and X.-J. Peng, J. Org. Chem. 70, 4910 (2005).https://doi.org/10.1021/jo0479213
D. Li, X. Huang, K. Han, and C.-G. Zhan, J. Am. Chem. Soc. 133, 7416 (2011). https://doi.org/10.1021/ja111657j
R. Ghiasi, Struct. Chem. 25, (2014). https://doi.org/10.1007/s11224-013-0345-7
M. Nilchi, R. Ghiasi, and E. M. Nasab, J. Chil. Chem. Sos. 64, (2019). https://doi.org/10.4067/s0717-97072019000104360
N. Shajari and R. Ghiasi, J. Struct. Chem. 59, (2018). https://doi.org/10.1134/S002247661803006X
F. Rezaeyani, R. Ghiasi, and M. Yousefi, Russ. J. Phys. Chem. A 92, 1748 (2018). https://doi.org/10.1134/S0036024418090224
M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision A.02 (Gaussian, Wallingford CT, 2009).
P. J. Hay, J. Chem. Phys. 66, 4377 (1977).https://doi.org/10.1063/1.433731
R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980). https://doi.org/10.1063/1.438955
A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980). https://doi.org/10.1063/1.438980
A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).https://doi.org/10.1063/1.1673095
D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010). https://doi.org/10.1063/1.3484283
D. Andrae, U. Haeussermann, M. Dolg, et al., Theor. Chim. Acta 77, 123 (1990). https://doi.org/10.1007/BF01114537
R. G. Parr and W. Yang Density-Function Theory of Atoms and Molecules (Oxford Univ. Press: Oxford, UK, 1989).
N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, J. Comp. Chem. 29, 839 (2008). https://doi.org/10.1002/jcc.20823
J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005). https://doi.org/10.1021/cr9904009
E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984). https://doi.org/10.1103/PhysRevLett.52.997
R. L. Martin, J. Chem. Phys. 118, 4775 (2003). https://doi.org/10.1063/1.1558471
L. V. Skripnikov, Chemissian Visualization Computer Program, 4.23, www.chemissian.com, 2014.
N. Mataga and T. Kubota. Molecular Interactions and Electronic Spectra (Marcel Dekker, New York, 1970).
Ed. by A. Kawski and J. F. Rabek (CRC, Boca Raton/Boston, 1992), Vol. V, p. 1.
N. G. Bakhshiev, Opt. Spectrosc. 16, 446 (1964).
C. Reichardt and T. Welton, Solvents and Solvent Effects in Organic Chemistry, Fourth Ed. (Wiley-VCH, Weinheim, 2011).
L. Onsager, J. Am. Chem. Soc. 58, (1936). https://doi.org/10.1021/ja01299a050
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
No potential conflict of interest was reported by the authors.
Rights and permissions
About this article
Cite this article
Reza Ghiasi, Rahimi, M. & Jamaat, P.R. Quantum Chemical Study of the Effect of Solvent on Structure, Electronic Properties, and Electronic Spectrum of the Carbyne Complex trans-[ClRu(PH3)4(≡C–CH=CMe2)]2+. Russ. J. Inorg. Chem. 65, 69–75 (2020). https://doi.org/10.1134/S0036023620010088
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0036023620010088