Skip to main content
Log in

Quantum Chemical Study of the Effect of Solvent on Structure, Electronic Properties, and Electronic Spectrum of the Carbyne Complex trans-[ClRu(PH3)4(≡C–CH=CMe2)]2+

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

This study investigates the effect of six different solvents (chloroform, tetrahydrofuran, dichloroethane, acetone, ethanol, and methanol) on the structure, dipole moment, frontier orbitals energies, reactivity parameters, and electronic spectrum of the carbyne complex trans-[ClRu(PH3)4(≡C–CH=CMe2)]2+ using B3LYP* quantum mechanical calculations. The Conductor-like Polarizable Continuum Model (CPCM) is used for calculation in solution phase. The PCM calculations are accompanied with SMD-Coulomb atomic radii. The effect of solvent on the dipole moment, energies of frontier orbitals, and wavenumber of the most intense electronic transition (λmax) of this complex is studied. The relationships between these parameters and solvent polarity functions including both the dielectric constant (ε) and refractive index (nD) of the liquid medium are investigated. Correlations of the calculated λmax with the Kirkwood–Bauer–Magat equation (KBM) and improved form of this equation are also studied. The natural transition orbitals (NTOs) are used for illustrating the nature of the most intense electronic transition in the studied complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Q. Yuan and F. Ding, Nanoscale 6, 12727 (2014).https://doi.org/10.1039/C4NR03757J

    Article  CAS  PubMed  Google Scholar 

  2. A. F. Hill, J. S. Ward, and Y. Xiong, Organometallics 34, 5057 (2015).https://doi.org/10.1021/acs.organomet.5b00635

    Article  CAS  Google Scholar 

  3. E. O. Fischer, G. Kreis, C. G. Kreiter, et al., Angew. Chem. Int. Ed. 12, 564 (1973).https://doi.org/10.1002/anie.197305641

    Article  Google Scholar 

  4. C. K. R. Depooeter, Chem. Rev. 81, 447 (1981).https://doi.org/10.1021/cr00045a002

    Article  Google Scholar 

  5. S. G. Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon Press: Oxford, U.K., 1982; Vol. 8, p 40.

  6. J. W.Herndon, Coord. Chem. Rev. 257, 2899 (2013).https://doi.org/10.1016/j.ccr.2013.05.011

    Article  CAS  Google Scholar 

  7. J. W. Herndon, Coord. Chem. Rev. 377, 86 (2018).https://doi.org/10.1016/j.ccr.2018.08.007

    Article  CAS  Google Scholar 

  8. R. E. D. Re and M. D. Hopkins, Coord. Chem. Rev. 249, 1396 (2005). .https://doi.org/10.1016/j.ccr.2005.03.011

    Article  CAS  Google Scholar 

  9. J. W. Herndon, Coord. Chem. Rev. 243, 3 (2003).https://doi.org/10.1016/S0010-8545(02)00276-X

    Article  CAS  Google Scholar 

  10. D. J. Mindiola, Acc. Chem. Res. 39, 813 (2006).https://doi.org/10.1021/ar0500113

    Article  CAS  PubMed  Google Scholar 

  11. R. L. Cordiner, P. A. Gugger, A. F. Hill, and A. C. Willis, Organometallics 28, 6632 (2009).https://doi.org/10.1021/om900868s

    Article  CAS  Google Scholar 

  12. L. Colebatch, A. F. Hill, R. Shang, and A. C.Willis, Organometallics 29, 6482 (2010). .https://doi.org/10.1021/om1008296

    Article  CAS  Google Scholar 

  13. J. W. Herndon, Coord. Chem. Rev. 272, 48 (2014). https://doi.org/10.1016/j.ccr.2014.02.026

    Article  CAS  Google Scholar 

  14. J. W. Herndon, Coord. Chem. Rev. 286, 30 (2015).https://doi.org/10.1016/j.ccr.2014.09.021

    Article  CAS  Google Scholar 

  15. D. A.Valyaev, K. I. Utegenov, V. V. Krivykh, et al., J. Organomet. Chem. 867, 353 (2018).https://doi.org/10.1016/j.jorganchem.2017.12.029

    Article  CAS  Google Scholar 

  16. H. S. Kim and R. J. Angelici, Adv. Organomet. Chem. 27, 51 (1987).https://doi.org/10.1016/S0065-3055(08)60026-X

    Article  CAS  Google Scholar 

  17. A. Mayr and H. Hoffmeister, Adv. Organomet. Chem. 32, 227 (1991).https://doi.org/10.1016/S0065-3055(08)60481-5

    Article  CAS  Google Scholar 

  18. T. Bolano, M. A. Esteruelas, and E. Oñate, J. Organomet. Chem. 696, 3911 (2011).https://doi.org/10.1016/j.jorganchem.2011.04.029

    Article  CAS  Google Scholar 

  19. W. Bai, K.-H. Lee, W. Y. Hung, et al., Organometallics 36, 657 (2017).https://doi.org/10.1021/acs.organomet.6b00860

    Article  CAS  Google Scholar 

  20. H. Hashimoto and H. Tobita, Coord. Chem. Rev. 355, 362 (2018).https://doi.org/10.1016/j.ccr.2017.09.023

    Article  CAS  Google Scholar 

  21. M. K. Shamami, R.Ghiasi, and M. D. Asli, J. Chin. Chem. Soc. 64, 522 (2017).https://doi.org/10.1002/jccs.201600855

    Article  CAS  Google Scholar 

  22. M. K. Shamami and R. Ghiasi, J. Chin. Chem. Soc. 64, 651 (2017).https://doi.org/10.1002/jccs.201700020

    Article  CAS  Google Scholar 

  23. L. Zhang, M. Fátima, C. G. d. Silva, et al., Organometallics 20, 2782 (2001).https://doi.org/10.1021/om001095g

    Article  CAS  Google Scholar 

  24. J. M.Poblet, A. S. Rola, and W. M. Bénard, Chem. Phys. Lett. 126, 169 (1986).https://doi.org/10.1016/S0009-2614(86)80033-1

    Article  CAS  Google Scholar 

  25. R. Ghiasi, J. Mol. Liq. 264, (2018).https://doi.org/10.1016/j.molliq.2018.05.068

  26. M. Rahimi and R. Ghiasi, J. Mol. Liq. 265, (2018).https://doi.org/10.1016/j.molliq.2018.04.154

  27. H. Ghobadi, R. Ghiasi, and S. Jamehbozorgi, J. Chin. Chem. Soc. 64, (2017).https://doi.org/10.1002/jccs.201600795

  28. S. Rigaut, D. Touchard, and P. H. Dixneuf, Organometallics 22, 3980 (2003).https://doi.org/10.1021/om0304098

    Article  CAS  Google Scholar 

  29. P. Selvarengan and P. Kolandaivel, J. Mol. Struct. Theochem. 617, 99 (2002).https://doi.org/10.1016/S0166-1280(02)00421-9

    Article  CAS  Google Scholar 

  30. S. B. Allin, T. M.Leslie, and R. S. Lumpkin, Chem. Mater. 8, 428 (1996).https://doi.org/10.1021/cm950362j

    Article  CAS  Google Scholar 

  31. A. J. A. Aquino, D. Tunega, G. Haberhauer, et al., J. Phys. Chem. A.106, 1862 (2002).https://doi.org/10.1021/jp013677x

    Article  CAS  Google Scholar 

  32. A. H. E. M. Springborg, Specialist Periodical Reports: Chemical Modelling, Applications and Theory (Royal Society of Chemistry: Cambridge, UK, 2008), Vol. 5.

    Google Scholar 

  33. M. Rezazadeh, R. Ghiasi, and S. Jamehbozorgi, J. Struc. Chem. 59, 245 (2018).https://doi.org/10.1134/S0022476618010390

    Article  CAS  Google Scholar 

  34. R. Ghiasi, F. Zafarniya, and S. Ketabi, Russ. J. Inorg. Chem. 62, 1371 (2017).https://doi.org/10.1134/S0036023617100096

    Article  CAS  Google Scholar 

  35. H. Alavi and R. Ghiasi, J. Struc. Chem. 58, 30 (2017).https://doi.org/10.1134/S0022

    Article  CAS  Google Scholar 

  36. F. Zafarniya, R. Ghiasi, and S. Jameh-Bozorghi, Phys. Chem. Liq. 55, 444 (2017).https://doi.org/10.1080/00319104.2016.1218877

    Article  CAS  Google Scholar 

  37. F. Zafarnia, R. Ghiasi, and S. Jamehbozorgi, J. Struc. Chem. 58, 1324 (2017).https://doi.org/10.1134/S0022476617070083

    Article  CAS  Google Scholar 

  38. F. Zafarniya, R. Ghiasi, and S. Jameh-Bozorgi, Phys. Chem. Liq. 55, (2017).https://doi.org/10.1080/00319104.2016.1218877

  39. N. E. Fard, R. Fazaeli, and R. Ghiasi, Chem. Eng. Tech. 39, (2016).https://doi.org/10.1002/ceat.201500116

  40. R. Ghiasi and A. Zamani, J. Chin. Chem. Soc. 64, (2017).https://doi.org/10.1002/jccs.201700172

  41. R. Ghiasi, H. Pasdar, and S. Fereidoni, Russ. J. Inorg. Chem. 61, 327 (2016).https://doi.org/10.1134/S0036023616030104

    Article  CAS  Google Scholar 

  42. A. Peikari, R. Ghiasi, and H. Pasdar, Russ. J. Phys. Chem. A 89, 250 (2015).https://doi.org/10.1134/S0036024415020260

    Article  CAS  Google Scholar 

  43. R. Ghiasi, S. Abdolmohammadi, and S. Moslemizadeh, J. Chin. Chem. Soc. 62, (2015).https://doi.org/10.1002/jccs.201500249

  44. M. Z. Fashami, R. Ghiasi, and H. Pasdar, J. Struct. Chem. 56, (2015).https://doi.org/10.1134/S0022476615080041

  45. M. Rezazadeh, R. Ghiasi, and S. Jamehbozorgi, J. Appl. Spectrosc. 85, (2018).https://doi.org/10.1007/s10812-018-0683-8

  46. N. Sadeghi, R. Ghiasi, R. Fazaeli, and S. Jamehbozorgi, J. Appl. Spectrosc. 83, (2017).https://doi.org/10.1007/s10812-017-0383-9

  47. G. Song, Y. Su, R. A. Periana, et al., Angew. Chem. Int. Ed. 49, 912 (2010).https://doi.org/10.1002/anie.200905691

    Article  CAS  Google Scholar 

  48. H. Wang, Y. Wang, K.-L. Han, and X.-J. Peng, J. Org. Chem. 70, 4910 (2005).https://doi.org/10.1021/jo0479213

    Article  CAS  PubMed  Google Scholar 

  49. D. Li, X. Huang, K. Han, and C.-G. Zhan, J. Am. Chem. Soc. 133, 7416 (2011). https://doi.org/10.1021/ja111657j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. R. Ghiasi, Struct. Chem. 25, (2014). https://doi.org/10.1007/s11224-013-0345-7

  51. M. Nilchi, R. Ghiasi, and E. M. Nasab, J. Chil. Chem. Sos. 64, (2019). https://doi.org/10.4067/s0717-97072019000104360

  52. N. Shajari and R. Ghiasi, J. Struct. Chem. 59, (2018). https://doi.org/10.1134/S002247661803006X

  53. F. Rezaeyani, R. Ghiasi, and M. Yousefi, Russ. J. Phys. Chem. A 92, 1748 (2018). https://doi.org/10.1134/S0036024418090224

    Article  Google Scholar 

  54. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision A.02 (Gaussian, Wallingford CT, 2009).

  55. P. J. Hay, J. Chem. Phys. 66, 4377 (1977).https://doi.org/10.1063/1.433731

    Article  CAS  Google Scholar 

  56. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980). https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  57. A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980). https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  58. A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).https://doi.org/10.1063/1.1673095

    Article  CAS  Google Scholar 

  59. D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010). https://doi.org/10.1063/1.3484283

    Article  CAS  PubMed  Google Scholar 

  60. D. Andrae, U. Haeussermann, M. Dolg, et al., Theor. Chim. Acta 77, 123 (1990). https://doi.org/10.1007/BF01114537

    Article  CAS  Google Scholar 

  61. R. G. Parr and W. Yang Density-Function Theory of Atoms and Molecules (Oxford Univ. Press: Oxford, UK, 1989).

    Google Scholar 

  62. N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, J. Comp. Chem. 29, 839 (2008). https://doi.org/10.1002/jcc.20823

    Article  CAS  Google Scholar 

  63. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005). https://doi.org/10.1021/cr9904009

    Article  CAS  Google Scholar 

  64. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984). https://doi.org/10.1103/PhysRevLett.52.997

    Article  CAS  Google Scholar 

  65. R. L. Martin, J. Chem. Phys. 118, 4775 (2003). https://doi.org/10.1063/1.1558471

    Article  CAS  Google Scholar 

  66. L. V. Skripnikov, Chemissian Visualization Computer Program, 4.23, www.chemissian.com, 2014.

  67. N. Mataga and T. Kubota. Molecular Interactions and Electronic Spectra (Marcel Dekker, New York, 1970).

    Google Scholar 

  68. Ed. by A. Kawski and J. F. Rabek (CRC, Boca Raton/Boston, 1992), Vol. V, p. 1.

  69. N. G. Bakhshiev, Opt. Spectrosc. 16, 446 (1964).

    Google Scholar 

  70. C. Reichardt and T. Welton, Solvents and Solvent Effects in Organic Chemistry, Fourth Ed. (Wiley-VCH, Weinheim, 2011).

    Google Scholar 

  71. L. Onsager, J. Am. Chem. Soc. 58, (1936). https://doi.org/10.1021/ja01299a050

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghiasi.

Ethics declarations

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reza Ghiasi, Rahimi, M. & Jamaat, P.R. Quantum Chemical Study of the Effect of Solvent on Structure, Electronic Properties, and Electronic Spectrum of the Carbyne Complex trans-[ClRu(PH3)4(≡C–CH=CMe2)]2+. Russ. J. Inorg. Chem. 65, 69–75 (2020). https://doi.org/10.1134/S0036023620010088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620010088

Keywords:

Navigation