Skip to main content
Log in

Synthesis and Characterization of Thorite Nanoparticles by Hydrothermal Method

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of thorium silicate (thorite) was carried out to characterize the parameters affecting the process. A synthetic thorite with formula ThSiO4 was prepared by hydrothermal method with a mixture of 0.14 M thorium chloride (ThCl4) solution and sodium silicate containing 0.14 M SiO2. The effect of several experimental parameters on synthesis of thorite was investigated. The most important of these parameters were the pH of solution in hydrothermal process and volumetric ratio of SiO2 : ThCl4. The optimum pH in the hydrothermal process was 8–9, which was obtained by buffering with sodium bicarbonate. The increasing of volumetric ratio of SiO2 : ThCl4 led to gelatinization of synthetic material. The operating conditions of synthesis of thorite were determined as follows: volumetric ratio of SiO2 : ThCl4 = 0.9; pH after adding of 8 M NaOH, 8–8.5; pH after adding 0.5 M sodium bicarbonate, 8–9; temperature of heating in furnace, 250°C; time of heating in furnace, 24 h; pH after hydrothermal process, 8–9; temperature of drying in oven, 60°C; time of drying in oven, 24 h. In each batch of synthesis process, about 2.2 g or 7 mmol of thorium silicate was produced. The purity of thorite was determined 97.80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. http://www.galleries.com/Thorite

  2. L. B. Serezhkina, A. V. Savchenkov, and V. N. Serezhkin, Russ. J. Inorg. Chem. 62, 633 (2017). https://doi.org/10.1134/S0036023617050217

    Article  CAS  Google Scholar 

  3. C. Frondel, Am. Mineral. 38, 1007 (1953). https://doi.org/10.3133/tei327

    Article  CAS  Google Scholar 

  4. L. R. Stieff, T. W. Stern, and A. M. Sherwood, Am. Mineral. 41, 675 (1956). https://doi.org/10.3133/tei538

    Article  CAS  Google Scholar 

  5. L. H. Fuchs and E., Gebert, Am. Mineral. 43, 243 (1958).

    CAS  Google Scholar 

  6. I. R. Shein, K. I. Shein, and A. L. Ivanovskii, Phys. Chem. Minerals. 33, 545 (2006). https://doi.org/10.1007/s00269-006-0100-3

    Article  CAS  Google Scholar 

  7. M. Taylor and R. C. Ewing, Acta Cryst., Sect. B 34, 1074 (1978). https://doi.org/10.1107/S0567740878004951

    Article  Google Scholar 

  8. J. W. Anthony, R. A. Bideaux, K. W. Bladh, and M. C. Nichols, Handbook of Mineralogy (Mineralogical Society of America, Chantilly, 2003).

    Google Scholar 

  9. C. Frondel and R. L. Collette, Am. Mineral. 42, 759 (1957).

    CAS  Google Scholar 

  10. D. P. Sinha and R. Prasad, J. Inorg, Nucl. Chem. 35, 2612 (1973). https://doi.org/10.1016/0022-1902(73)80343-4

    Article  CAS  Google Scholar 

  11. F. A. Mumpton and R. Roy, Geochim. Cosmochim. Acta 21, 217 (1961). https://doi.org/10.1016/S0016-7037(61)80056-2

    Article  CAS  Google Scholar 

  12. L. Mazeina, S. V. Ushakov, A. Navrotsky, and L. A. Boatner, Geochim. Cosmochim. Acta 69, 4675 (2005). https://doi.org/10.1016/j.gca.2005.03.053

    Article  CAS  Google Scholar 

  13. C. B. Finch, L. A. Harris, and G. W. Clark, Am. Mineral. 49, 782 (1964).

    CAS  Google Scholar 

  14. H. Li, P. Kegler, V. V. Klepov, et al., Inorg. Chem. 57, 6734 (2018). https://doi.org/10.1021/acs.inorgchem.8b01072

    Article  CAS  PubMed  Google Scholar 

  15. E. R. Vance, Mat. Res. Bull. 21, 321 (1986). https://doi.org/10.1016/0025-5408(86)90189-3

    Article  CAS  Google Scholar 

  16. G. Vilmin, S. Komarneni, and R. Roy, J. Mater. Res. 2, 489 (1987). https://doi.org/10.1557/JMR.1987.0489

    Article  CAS  Google Scholar 

  17. L. H. Fuchs, Am. Mineral. 43, 367 (1958)

    CAS  Google Scholar 

  18. A. V. Knyazev, N. G. Chernorukov, and M. E. Komshina, Radiochemistry 54, 431 (2012). https://doi.org/10.1134/S1066362212050025

    Article  CAS  Google Scholar 

  19. N. Kamegashira, J. Mater. Sci. 14, 505 (1979). https://doi.org/10.1007/BF00589853

    Article  CAS  Google Scholar 

  20. S. Szenknect, D. T. Costin, N. Clavier, et al., Inorg. Chem. 52, 6957 (2013). https://doi.org/10.1021/ic400272s

    Article  CAS  PubMed  Google Scholar 

  21. D. T. Costin, A. Mesbah, N. Clavier, et al., Prog. Nucl. Energ. 57, 155 (2012). https://doi.org/10.1016/j.pnucene.2011.10.004

    Article  CAS  Google Scholar 

  22. V. Pointeau, A. P. Deditius, F. Miserque, et al., J. Nucl. Mater. 393, 449 (2009). https://doi.org/10.1016/j.jnucmat.2009.06.030

    Article  CAS  Google Scholar 

  23. H. Reynolds, J. Tardio, S. Bhargava, Proceedings of Chemeca, 1 (2011)

  24. S. Labs, C. Hennig, S. Weiss, et al., Environ. Sci. Technol. 48, 854 (2014). https://doi.org/10.1021/es403995b

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to AEOI (atomic energy organization of Iran) for the samples analysis by XRD, XRF, BET and SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdollahy.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadiri, A., Abdollahy, M., Khanchi, A. et al. Synthesis and Characterization of Thorite Nanoparticles by Hydrothermal Method. Russ. J. Inorg. Chem. 64, 1829–1835 (2019). https://doi.org/10.1134/S0036023619140122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619140122

Keywords:

Navigation