Skip to main content
Log in

Extraction of Rare-Earth Elements(III) from Nitric Acid Solutions with Diethyl 2-[(Diphenylphosphoryl)methoxy]-5-ethylphenylphosphonate

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract—

Extraction of micro amounts of rare earth elements(III) (REE) from nitric acid solutions with diethyl 2-[(diphenylphosphoryl)methoxy]-5-ethylphenylphosphonate (I) in dichloroethane and ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide has been studied. The stoichiometry of extracted complexes has been determined, the effect of HNO3 concentration in aqueous phase on the efficiency of metal ion recovery into organic phase has been considered. It has been found that compound I in dichloroethane extracts REE(III) less efficiently than its analogs with phenyl and butyl substituents at the phosphorus atom. It has been shown that the efficiency of REE(III) extraction with compound I from nitric acid solutions increases considerably in the presence of ionic liquid in organic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. I. Mikhailichenko, E. B. Mikhlin, and Yu. B. Patrikeev, Rare Earth Metals (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  2. M. Yu. Alyapychev, V. A. Babain, and Yu. A. Ustynyuk, Russ. Chem. Rev. 85, 943 (2016). https://doi.org/10.1070/RCR4588

    Article  CAS  Google Scholar 

  3. A. Leoncini, J. Huskens, and W. Verboom, Chem. Soc. Rev. 46, 7229 (2017). https://doi.org/10.1039/C7CS00574A

    Article  CAS  PubMed  Google Scholar 

  4. A. M. Rozen, Z. I. Nikolotova, and N. A. Kartasheva, Radiokhimiya 28, 407 (1986).

    CAS  Google Scholar 

  5. M. K. Chmutova, M. N. Litvina, G. A. Pribylova, et al., Radiokhimiya 41, 331 (1999).

    Google Scholar 

  6. H. T. Sartain, S. N. McGraw, and C. L. Lawrence, Inorg. Chim. Acta 426, 126 (2015). https://doi.org/10.1016/j.ica.2014.11.032

    Article  CAS  Google Scholar 

  7. E. I. Goryunov, I. B. Goryunova, T. V. Baulina, et al., Ross. Khim. Zh. 54 (3), 45 (2010).

    CAS  Google Scholar 

  8. F. Arnaud-New, V. Bohmer, J. -F. Dozol, et al., J. Chem. Soc., Perkin Trans. 2, 1175 (1996). https://doi.org/10.1039/P29960001175

  9. I. Smirnov, M. Karavan, V. Babain, et al., Radiochimica Acta. 95, 97 (2007). https://doi.org/10.1524/ract.2007.95.2.97

  10. M. R. Yaftian, M. Burgard, C. Wieser, et al., Solvent Extr. Ion Exch. 16, 1131 (1998). https://doi.org/10.1080/07360299808934572

    Article  CAS  Google Scholar 

  11. I. V. Smirnov, M. D. Karavan, T. I. Efremova, et al., Radiochemistry (Moscow, Russ. Fed.) 49, 482 (2007). https://doi.org/10.1134/S106636220705007

  12. J. Kamenik, F. Sebesta, J. John, et al., J. Radioanal. Nucl. Chem. 304, 313 (2015). https://doi.org/10.1007/s10967-014-3543-x

    Article  CAS  Google Scholar 

  13. E. M. Bond, U. Engelhardt, T. P. Deere, et al. Solvent Extr. Ion Exch. 15, 381 (1997). https://doi.org/10.1080/07366299708934484

    Article  CAS  Google Scholar 

  14. S. Ouizem, D. Rosrio-Amorin, D. A. Dickie, et al., Dalton Trans. 43, 8368 (2014). https://doi.org/10.1039/C3DT53611D

    Article  CAS  PubMed  Google Scholar 

  15. H. Narita, T. Yaita, K. Tamura, and S. Tachimori, Radiochim. Acta 81, 223 (1998). https://doi.org/10.1524/ract.1998.81.4.223

    Article  CAS  Google Scholar 

  16. Y. Sasaki, Y. Sugo, S. Suzuki, and S. Tachimori, Solvent Extr. Ion Exch. 19, 91 (2001). https://doi.org/10.1081/SEI-100001376

    Article  CAS  Google Scholar 

  17. Z. -X. Zhui, Y. Sasaki, S. Suzuki, and T. Kimura, Anal. Chim. Acta 527, 163 (2004). https://doi.org/10.1016/j.aca.2004.09.023

    Article  CAS  Google Scholar 

  18. Y. Sasaki, Y. Sugo, K. Morita, and K. L. Nash, Solvent Extr. Ion Exch. 33, 625 (2015). https://doi.org/10.1080/07366299.2015.1087209

    Article  CAS  Google Scholar 

  19. E. Campbell, V. E. Holfeltz, G. B. Hall, et al. Solvent Extr. Ion Exch. 36, 331 (2018). https://doi.org/10.2172/1488863

    Article  CAS  Google Scholar 

  20. S. A. Ansari, P. K. Mohapatra, A. Leoncini, et al., Dalton Trans. 46, 11355 (2017). https://doi.org/10.1039/C7DT03831C

    Article  CAS  PubMed  Google Scholar 

  21. A. N. Turanov, V. K. Karandashev, N. K. Evseeva, et al., Radiokhimiya 41, 219 (1999).

    Google Scholar 

  22. A. N. Turanov, V. K. Karandashev, and V. E. Baulin, Solv. Extr. Ion Exch. 17, 1423 (1999). https://doi.org/10.1080/07366299908934656

    Article  CAS  Google Scholar 

  23. A. N. Turanov, V. K. Karandashev, V. E. Baulin, et al., Solv. Extr. Ion Exch. 27, 551 (2009). https://doi.org/10.1080/07366290903044683

    Article  CAS  Google Scholar 

  24. A. M. Rozen, Z. I. Nikolotova, N. A. Kartasheva, and K. S. Yudina, Dokl. Akad. Nauk SSSR 222, 1151 (1975).

    CAS  Google Scholar 

  25. A. M. Safiullina, O. A. Sinegribova, V. E. Baulin, et al., Tsvetn. Metall., No. 3, 43 (2012).

  26. M. Koel, CRC Crit. Rev. Anal. Chem. 35, 177 (2005). https://doi.org/10.1080/10408340500304016

    Article  CAS  Google Scholar 

  27. Z. Kolarik, Solvent Extr. Ion Exch. 31, 24 (2013). https://doi.org/https://doi.org/10.1080/07366299.2012.700589

    Article  CAS  Google Scholar 

  28. I. Billard, Handbook on the Physics and Chemistry of Rare Earths43, 213 (2013).

    Article  CAS  Google Scholar 

  29. P. K. Mohapatra, Chem. Prod. Proc. Model. 10, 135 (2015).

    Article  CAS  Google Scholar 

  30. K. Nakashima, F. Kubota, T. Maruyama, and M. Goto, Anal. Sci. 19, 1097 (2003). https://doi.org/10.2116/analsci.19.1097

    Article  CAS  PubMed  Google Scholar 

  31. A. N. Turanov, V. K. Karandashev, and V. E. Baulin, Russ. J. Inorg. Chem. 53, 970 (2008). https://doi.org/10.1134/S0036023608060272

    Article  Google Scholar 

  32. A. N. Turanov, V. K. Karandashev, and V. E. Baulin, Radiochemistry 50, 266 (2008). https://doi.org/10.1134/S1066362208030090

    Article  CAS  Google Scholar 

  33. K. Shimojo, K. Kurahashi, and H. Naganava, Dalton Trans. 37, 5083 (2008).

    Article  Google Scholar 

  34. A. N. Turanov, V. K. Karandashev, and V. E. Baulin, Solv. Extr. Ion Exch. 26, 77 (2008). https://doi.org/10.1080/07366290801904871

    Article  CAS  Google Scholar 

  35. S. Panja, P. K. Mohapatra, S. C. Tripathi, et al., Sep. Purif. Technol. 96, 289 (2012). https://doi.org/10.1016/j.seppur.2012.06.015

    Article  CAS  Google Scholar 

  36. S. V. Demin, S. E. Nefedov, V. I. Zhilov, et al., Russ. J. Inorg. Chem. 57, 897 (2012). https://doi.org/10.1134/S0036023612060095

    Article  CAS  Google Scholar 

  37. P. Bonhote, A. P. Dias, N. Papageorgiou, et al., Inorg. Chem. 35, 1168 (1996). https://doi.org/10.1021/ic951325x

    Article  CAS  PubMed  Google Scholar 

  38. A. M. Rozen and B. V. Krupnov, Russ. Chem. Rev. 65, 973 (1996). https://doi.org/10.1070/RC1996v065n11ABEH00021

    Article  Google Scholar 

  39. V. S. Vlasov and A. M. Rozen, Radiokhimiya 30, 146 (1988).

    CAS  Google Scholar 

  40. K. B. Yatsimirskii, N. A. Kostromina, Z. A. Sheka, et al., Chemistry of Rare-Earth Complexes (Naukova Dumka, Kiev, 1966).

    Google Scholar 

  41. A. N. Turanov, V. K. Karandashev, and A. N. Yarkevich, Radiochemistry 60, 170 (2018). https://doi.org/10.1134/S1066362218020078

    Article  CAS  Google Scholar 

  42. C. Gaillard, M. Boltoeva, I. Billard, et al., Chem Phys Chem 16, 2653 (2015). https://doi.org/10.1002/cphc.201500283

    Article  CAS  PubMed  Google Scholar 

  43. K. Binnemans, Chem. Rev. 107, 2593 (2007). https://doi.org/10.1021/cr050979c

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed under the State Contract of 2019 for the Institute of Solid-State Physics, Russian Academy of Sciences (RAS), the Institute of Microelectronics Technology and High Purity Materials RAS, the Frumkin Institute of Physical Chemistry and Electrochemistry RAS, the Institute of Physiologically Active Substances RAS and financially supported in part by the Russian Foundation for Basic Research (project no. 18-29-24069) and the Ministry of Education and Science of the Russian Federation via the Program for the competitiveness enhancement of the National University of Science and Technology “MISIS” among leading worldwide research and education centers for 2013–2020 (no. K1-2014-026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Turanov.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turanov, A.N., Karandashev, V.K., Baulin, V.E. et al. Extraction of Rare-Earth Elements(III) from Nitric Acid Solutions with Diethyl 2-[(Diphenylphosphoryl)methoxy]-5-ethylphenylphosphonate. Russ. J. Inorg. Chem. 64, 1297–1303 (2019). https://doi.org/10.1134/S0036023619100164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619100164

Keywords:

Navigation