Study on Th(IV) Adsorption Properties on Natural and Surface-Modified Red Soil

Abstract

In order to study the effects of inorganic and organic modification on the adsorption properties of red soil (RS), ferric chloride (FC) and hexadecyl trimethyl ammonium bromide (HTAB) surface-modified red soil have been prepared and characterized by SEM, FT-IR and X-ray diffraction. Adsorption properties of Th(IV) on natural red soil (NRS), FC surface-modified red soil (FC-RS), and HTAB surface-modified red soil (HTAB-RS) have been investigated by batch technique. The inorganic and organic modification have been found to greatly improve the adsorption kinetics and thermodynamic properties and increase the adsorption capacity as compared with NRS. The adsorption of Th(IV) on the three adsorbents have been strongly dependent on pH and ionic strength, and intra-particle diffusion was the rate-controlling step. The non-linear pseudo-second-order kinetic model could fit the kinetics much better compared with the linear forms, and the linear and non-linear Langmuir expressions could fit the thermodynamics. The results obtained denote on successful application of inorganic and organic modification to treatment of water samples spiked to Th(IV) ions.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. 1

    M. Schmidt, S. Hellebrandt, K. E. Knope, et al., Geochim. Cosmochi. Acta 165, 280 (2015)

    Article  CAS  Google Scholar 

  2. 2

    M. M. Wang, X. Q. Tao, and X. P. Song, J. Radioanal. Nucl. Chem. 288, 859 (2011)

    Article  CAS  Google Scholar 

  3. 3

    I. Yener, E. V. Oral, I. Dolak, S. Ozdemir, and R. Ziyadanogullari, Ecol. Eng. 103, 43 (2017)

    Article  Google Scholar 

  4. 4

    M. Talebi, S. Abbasizadeh, and A. R. Keshtkar, Process Saf. Environ. 109, 340 (2017)

    Article  CAS  Google Scholar 

  5. 5

    Q. H. Xu, D. Q. Pan, and W. S. Wu, J. Radioanal. Nucl. Chem. 305, 535 (2015)

    Article  CAS  Google Scholar 

  6. 6

    A. R. Sani, A. H. Bandegharaei, S. H. Hosseini, et al., J. Hazard. Mater. 286, 152 (2015)

    Article  CAS  Google Scholar 

  7. 7

    Y. Li, C. L. Wang, and C. L. Liu, J. Radioanal. Nucl. Chem. 302, 489 (2014)

    Article  CAS  Google Scholar 

  8. 8

    J. Wang, Z. S. Chen, W. Y. Chen, et al., J. Radioanal. Nucl. Chem. 310, 597 (2016)

    Article  CAS  Google Scholar 

  9. 9

    D. Q. Pan, Q. H. Fan, P. Li, Chem, Chem. Eng. J. 172, 898 (2011)

    Article  CAS  Google Scholar 

  10. 10

    Z. Y. Tao, W. J. Li, F. M. Zhang, and J. Han, J. Radioanal. Nucl. Chem. 268, 563 (2006)

    Article  CAS  Google Scholar 

  11. 11

    L. Chen, X. J. Yu, and Z. D. Zhao, J. Radioanal. Nucl. Chem. 274, 187 (2007)

    Article  CAS  Google Scholar 

  12. 12

    F. Houhoune, D. Nibou, S. Chegrouche, and S. Menacer, J. Environ. Chem. Eng. 4, 3459 (2016)

    Article  CAS  Google Scholar 

  13. 13

    M. W. Clark, T. E. Payn, J. J. Harrison, et al., Appl. Geochem. 53, 79 (2015)

    Article  CAS  Google Scholar 

  14. 14

    M. S. Hosseini and A. H. Bandegharaei, J. Hazard. Mater. 190, 755 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. 15

    T. Yu, S. M. Liang, T. Pan, and H. Li, J. Radioanal. Nucl. Chem. 314, 297 (2017)

    Article  CAS  Google Scholar 

  16. 16

    B. K. Schroth and G. Sposito, Clay. Clay. Miner. 45, 85 (1997)

    Article  CAS  Google Scholar 

  17. 17

    L. J. Qian, J. N. Zhao, P. Z. Hu, et al., J. Radioanal. Nucl. Chem. 283, 653 (2010)

    Article  CAS  Google Scholar 

  18. 18

    Y. H. Dong, Z. J. Liu, and Y. Y. Li, J. Radioanal. Nucl. Chem. 289, 257 (2011)

    Article  CAS  Google Scholar 

  19. 19

    S. T. Yang, J. X. Li, Y. Lu, et al., Appl. Radiat. Isotopes 67, 1600 (2009)

    Article  CAS  Google Scholar 

  20. 20

    B. W. Hu, Q. Y. Hu, C. G. Chen, et al., Chem. Eng. J. 322, 66 (2017)

    Article  CAS  Google Scholar 

  21. 21

    P. Ilaiyaraja, A.K. Singha Deb, D. Ponraju, et al., J. Hazard. Mater. 328, 1 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. 22

    S. Chowdhury and P. Saha, Bioremediat. J. 14, 196 (2010)

    Article  CAS  Google Scholar 

  23. 23

    N. Kumar Gupta and A. Sengupta, Hydrometallurgy 171, 8 (2017)

    Article  CAS  Google Scholar 

  24. 24

    L. L. Cheng, L. Zhai, W. J. Liao, et al., J. Environ. Chem. Eng. 2, 1236 (2014)

    Article  CAS  Google Scholar 

  25. 25

    N. Pan, J. G. Deng, D. B. Guan, et al., Appl. Surf. Sci. 287, 478 (2013)

    Article  CAS  Google Scholar 

  26. 26

    T. Yu, Q. H. Fan, W. S. Wu, et al., Radiochim. Acta.100, 753 (2012)

    Article  CAS  Google Scholar 

  27. 27

    F. A. Bertoni, A. C. Medeot, J. C. Gonzalez, et al., J. Colloid. Interf. Sci. 446, 122 (2015)

    Article  CAS  Google Scholar 

Download references

FUNDING

This work was supported by the National Natural Science Foundation of China (21561001) and the Natural Science Foundation of Jiangxi Province, China (20161BAB203100).

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Yu.

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Xu, Z.T. & Pan, T. Study on Th(IV) Adsorption Properties on Natural and Surface-Modified Red Soil. Russ. J. Inorg. Chem. 64, 914–923 (2019). https://doi.org/10.1134/S0036023619070179

Download citation

Keywords:

  • adsorption
  • red soil
  • modification
  • Th(IV)