Abstract
Complex oxides Sr2 − xLaxFeCo0.5Mo0.5O6 − δ, (x = 0.2, 0.4; δ ≈ 0.03–0.15) have been first synthesized by the sol-gel method. Their crystal structures have been refined by the Rietveld method; the refinement showed that the complex oxides have the structure of cubic double perovskite (a ≈ 2aper, space group Fm3̄m) with partial ordering of Fe(Co) and Mo in the B positions. Based on the 57Fe Mössbauer measurements, the average formal oxidation state of iron has been found to decrease from +3.20 (x = 0.0) to +3.04 (x = 0.4). Our study of the behavior of perovskites in a reducing Ar/H2 atmosphere (8%) revealed a decrease in the reduction resistance with decreasing La content (x = 0.4 → 0). The combination of the properties studied, namely chemical stability with respect to the reaction with Ce1 − xGdxO2 − x/2 and Zr1 − xYxO2 − x/2, high-temperature thermal expansion, and electrical conductivity in air and Ar/H2, shows that Sr1.6La0.4Fe-Co0.5Mo0.5O6 − δ (δ ≈ 0.03) perovskite is more attractive as an electrode material for medium-temperature symmetric solid oxide fuel cells than Sr2FeCo0.5Mo0.5O6 − δ.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
D. M. Bastidas, S. Tao, and J. T. S. Irvine, J. Mater. Chem. 16, 1603 (2006). https://doi.org/10.1039/b600532b
C. Ruiz-Morales, D. Marrero-Lopez, J. Canales-Vazquez, and J. T. S. Irvine, RSC Adv. 1, 1403 (2011).
C. Su, W. Wang, M. Liu, et al., Adv. En. Mater. 5, 1 (2015). https://doi.org/10.1002/aenm.201500188
S. Ya. Istomin, A. P. Ber, N. V. Lyskov, and E. V. Antipov, Russ. J. Inorg. Chem. 62, 1021 (2017). https://doi.org/10.1134/S0036023617080095
S. Ya. Istomin, A. V. Morozov, M. M. Abdullayev, et al., J. Solid State Chem. 258, 1 (2018). https://doi.org/10.1016/j.jssc.2017.10.005
Q. Liu, X. H. Dong, G. L. Xiao, et al., Adv. Mater. 22, 5478 (2010). https://doi.org/10.1002/adma.201001044
Q. Liu, G. L. Xiao, T. Howell, et al., ECS Trans. 35, 1357 (2011). https://doi.org/10.1149/1.3570122
A. B. Munoz-Garcia, D. E. Bugaris, M. Pavone, et al., J. Am. Chem. Soc. 134, 6826 (2012). https://doi.org/10.1021/ja300831k
J. B. Goodenough and Y. H. Huang, J. Power Sources 173, 1 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.011
T. Wei, Q. Zhang, Y. H. Huang, and J. B. Goodenough, J. Mater. Chem. 22, 225 (2012). https://doi.org/10.1039/C1JM14756K
X. Pan, Zh. Wang, B. He, et al., Int. J. Hydrogen En. 38, 4108 (2013). https://doi.org/10.1016/j-ijhydene.2013.01.121
Y. Song, Q. Zhong, W. Tanb, and C. Pan, Electrochim. Acta 139, 13 (2014). https://doi.org/10.1016/j.electacta.2014.07.022
Y. Song, Q. Zhong, D. Wang, et al., Int. J. Hydrogen En. 42, 22266 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.216
A. C. Larson and R. B. Von Dreele, Los Alamos Nat. Lab. Rep. LA-UR-86-748 (2000).
B. H. Toby, J. Appl. Crystallogr. 34, 210 (2001). https://doi.org/10.1107/S0021889801002242
M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).
F. Menil, J. Phys. Chem. Solids 46, 763 (1985). https://doi.org/10.1016/0022-3697(85)90001-0
A. A. Markov, M. V. Patrakeev, O. A. Savinskaya, et al., Solid State Ionics 179, 99 (2008). https://doi.org/10.1016/j.ssi.2007.12.037
A. A. Markov, O. A. Savinskaya, M. V. Patrakeev, et al., J. Solid State Chem. 182, 799 (2009). https://doi.org/10.1016/j.jssc.2008.12.026
O. V. Merkulov, A. A. Markov, M. V. Patrakeev, et al., J. Solid State Chem. 258, 447 (2018). https://doi.org/10.1016/j.jssc.2017.11.008
Author information
Authors and Affiliations
Corresponding author
Additional information
Russian Text © The Author(s), 2019, published in Zhurnal Neorganicheskoi Khimii, 2019, Vol. 64, No. 6, pp. 572–580.
Rights and permissions
About this article
Cite this article
Abdullaev, M.M., Istomin, S.Y., Sobolev, A.V. et al. Synthesis and Study of (Sr,La)2FeCo0.5Mo0.5O6 − δ Oxides with Double Perovskite Structure. Russ. J. Inorg. Chem. 64, 696–704 (2019). https://doi.org/10.1134/S0036023619060032
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0036023619060032