Skip to main content
Log in

Synthesis and Study of (Sr,La)2FeCo0.5Mo0.5O6 − δ Oxides with Double Perovskite Structure

Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Cite this article

Abstract

Complex oxides Sr2 − xLaxFeCo0.5Mo0.5O6 − δ, (x = 0.2, 0.4; δ ≈ 0.03–0.15) have been first synthesized by the sol-gel method. Their crystal structures have been refined by the Rietveld method; the refinement showed that the complex oxides have the structure of cubic double perovskite (a ≈ 2aper, space group Fmm) with partial ordering of Fe(Co) and Mo in the B positions. Based on the 57Fe Mössbauer measurements, the average formal oxidation state of iron has been found to decrease from +3.20 (x = 0.0) to +3.04 (x = 0.4). Our study of the behavior of perovskites in a reducing Ar/H2 atmosphere (8%) revealed a decrease in the reduction resistance with decreasing La content (x = 0.4 → 0). The combination of the properties studied, namely chemical stability with respect to the reaction with Ce1 − xGdxO2 − x/2 and Zr1 − xYxO2 − x/2, high-temperature thermal expansion, and electrical conductivity in air and Ar/H2, shows that Sr1.6La0.4Fe-Co0.5Mo0.5O6 − δ (δ ≈ 0.03) perovskite is more attractive as an electrode material for medium-temperature symmetric solid oxide fuel cells than Sr2FeCo0.5Mo0.5O6 − δ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. M. Bastidas, S. Tao, and J. T. S. Irvine, J. Mater. Chem. 16, 1603 (2006). https://doi.org/10.1039/b600532b

    Article  CAS  Google Scholar 

  2. C. Ruiz-Morales, D. Marrero-Lopez, J. Canales-Vazquez, and J. T. S. Irvine, RSC Adv. 1, 1403 (2011).

    Article  CAS  Google Scholar 

  3. C. Su, W. Wang, M. Liu, et al., Adv. En. Mater. 5, 1 (2015). https://doi.org/10.1002/aenm.201500188

    Google Scholar 

  4. S. Ya. Istomin, A. P. Ber, N. V. Lyskov, and E. V. Antipov, Russ. J. Inorg. Chem. 62, 1021 (2017). https://doi.org/10.1134/S0036023617080095

    Article  CAS  Google Scholar 

  5. S. Ya. Istomin, A. V. Morozov, M. M. Abdullayev, et al., J. Solid State Chem. 258, 1 (2018). https://doi.org/10.1016/j.jssc.2017.10.005

    Article  CAS  Google Scholar 

  6. Q. Liu, X. H. Dong, G. L. Xiao, et al., Adv. Mater. 22, 5478 (2010). https://doi.org/10.1002/adma.201001044

    Article  CAS  PubMed  Google Scholar 

  7. Q. Liu, G. L. Xiao, T. Howell, et al., ECS Trans. 35, 1357 (2011). https://doi.org/10.1149/1.3570122

    Article  CAS  Google Scholar 

  8. A. B. Munoz-Garcia, D. E. Bugaris, M. Pavone, et al., J. Am. Chem. Soc. 134, 6826 (2012). https://doi.org/10.1021/ja300831k

    Article  CAS  PubMed  Google Scholar 

  9. J. B. Goodenough and Y. H. Huang, J. Power Sources 173, 1 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.011

    Article  CAS  Google Scholar 

  10. T. Wei, Q. Zhang, Y. H. Huang, and J. B. Goodenough, J. Mater. Chem. 22, 225 (2012). https://doi.org/10.1039/C1JM14756K

    Article  CAS  Google Scholar 

  11. X. Pan, Zh. Wang, B. He, et al., Int. J. Hydrogen En. 38, 4108 (2013). https://doi.org/10.1016/j-ijhydene.2013.01.121

    Article  CAS  Google Scholar 

  12. Y. Song, Q. Zhong, W. Tanb, and C. Pan, Electrochim. Acta 139, 13 (2014). https://doi.org/10.1016/j.electacta.2014.07.022

    Article  CAS  Google Scholar 

  13. Y. Song, Q. Zhong, D. Wang, et al., Int. J. Hydrogen En. 42, 22266 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.216

    Article  CAS  Google Scholar 

  14. A. C. Larson and R. B. Von Dreele, Los Alamos Nat. Lab. Rep. LA-UR-86-748 (2000).

  15. B. H. Toby, J. Appl. Crystallogr. 34, 210 (2001). https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  16. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).

    Article  CAS  Google Scholar 

  17. F. Menil, J. Phys. Chem. Solids 46, 763 (1985). https://doi.org/10.1016/0022-3697(85)90001-0

    Article  CAS  Google Scholar 

  18. A. A. Markov, M. V. Patrakeev, O. A. Savinskaya, et al., Solid State Ionics 179, 99 (2008). https://doi.org/10.1016/j.ssi.2007.12.037

    Article  CAS  Google Scholar 

  19. A. A. Markov, O. A. Savinskaya, M. V. Patrakeev, et al., J. Solid State Chem. 182, 799 (2009). https://doi.org/10.1016/j.jssc.2008.12.026

    Article  CAS  Google Scholar 

  20. O. V. Merkulov, A. A. Markov, M. V. Patrakeev, et al., J. Solid State Chem. 258, 447 (2018). https://doi.org/10.1016/j.jssc.2017.11.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Istomin.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Neorganicheskoi Khimii, 2019, Vol. 64, No. 6, pp. 572–580.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullaev, M.M., Istomin, S.Y., Sobolev, A.V. et al. Synthesis and Study of (Sr,La)2FeCo0.5Mo0.5O6 − δ Oxides with Double Perovskite Structure. Russ. J. Inorg. Chem. 64, 696–704 (2019). https://doi.org/10.1134/S0036023619060032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619060032

Keywords

Navigation