Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 11, pp 1472–1477 | Cite as

A Study of Сu(II) Complexes with Pyruvic Acid Nicotinoyl and Isonicotinoyl Hydrazones by EPR and X-ray Absorption Spectroscopy

  • A. V. PulyaEmail author
  • I. I. Seifullina
  • L. S. Skorokhod
  • N. N. Efimov
  • E. A. Ugolkova
  • V. G. Vlasenko
  • A. L. Trigub
  • V. V. Minin
Physical Methods of Investigation
  • 8 Downloads

Abstract

The composition and structure of the Cu2+ coordination cores in the previously synthesized [CuCl(HNPv)] · H2O, [CuCl(HIPv)] · H2O, [Cu(AOc)(HNPv)], [Cu(AOc)(HIPv)], [Cu(NO3)(HNPv)], and [Cu(NO3)(HIPv)] complexes, where HNPv and HIPv pyruvic acid nicotinoyl and isonicotinoyl hydrazones, respectively, have been determined. The binuclear complex [Cu2(HNPv)2(H2O)2(μ-Cl)] has been synthesized for the first time and characterized by elemental analysis and IR, EPR, and EXAFS spectroscopy. Its dimeric structure has been proved by magnetic susceptibility measurement and EPR.

Keywords

Cu(II) complexes nicotinoyl and isonicotinoyl hydrazones EXAFS EPR α β γ parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Ivanova, S. A. Ovchar, and A. A. Baturin, Biomeditsina, No. 1, 92 (2005).Google Scholar
  2. 2.
    X. Hu, L. Zhang, L. Liu, et al., Inorg. Chim. Acta 359, 633 (2006).CrossRefGoogle Scholar
  3. 3.
    M. A. Affan, B. A. Fasihuddin, Y. Z. Liew, et al., J. Sci. Res. 1, 306 (2009). doi  https://doi.org/10.3329/jsr.v1i2.1775 CrossRefGoogle Scholar
  4. 4.
    M. B. Halli, B. A. Jumanal, P. V. Reddy, et al., Asian J. Chem, 23, 189 (2011).Google Scholar
  5. 5.
    R. M. Ahmed, E. I. Yousif, and M. J. Al-Jeboori, Sci. World J. 2013, 2013 (2013). doi  https://doi.org/10.1155/2013/754868 Google Scholar
  6. 6.
    S. A. Zalepkina, V. F. Smirnov, A. V. Borisov, et al., Fundam. Issl., No. 10, 25 (2015).Google Scholar
  7. 7.
    A. Sy, M. Dieng, I. E. Thiam, et al., Acta Crystallogr. 69, m108 (2013). doi  https://doi.org/10.1107/S1600536813001281 CrossRefGoogle Scholar
  8. 8.
    Y. Bai, J.-Li Wang, D.-B. Dang, and Y.-N. Zheng, Spectrochim. Acta A 97, 105 (2012). doi  https://doi.org/10.1016/j.saa.2012.05.076 CrossRefGoogle Scholar
  9. 9.
    J. V. Singh and N. P. Singh, Bioinorg. Chem. Appl. 2012, 1 (2012). doi  https://doi.org/10.1155/2012/104549 Google Scholar
  10. 10.
    N. P. Singh, and J. V. Singh, E.-J., Chem. 9, 1835 (2012). doi  https://doi.org/10.1155/2012/521345 CrossRefGoogle Scholar
  11. 11.
    F. Borbone, U. Caruso, S. Concilio, et al., Eur. J. Inorg. Chem. 2016, 818 (2016). doi  https://doi.org/10.1002/ejic.201501132 CrossRefGoogle Scholar
  12. 12.
    R. Bikas, N. Noshiranzadeh, L. Sieron, et al., Inorg. Chem. Commun. 67, 85 (2016). doi  https://doi.org/10.1016/j.inoche.2016.03.009 CrossRefGoogle Scholar
  13. 13.
    I. I. Seifullina, E. E. Martsinko, N. M. Khristova, and E. A. Chebanenko, Vestn. Odessk. Nats. Univ. Khim. 21, 18 (2016). doi  https://doi.org/10.18524/2304-0947.2016.2(58).74777 Google Scholar
  14. 14.
    A. Shrivastav, N. K. Singh, and S. M. Singh, Biometals 16, 501 (2003).CrossRefGoogle Scholar
  15. 15.
    D. Yu. Vasil’ev, V. D. Boyarshinov, A. I. Mikhalev, and T. A. Yushkova, All-Russia Scientific and Practical Conference “Youth Science 2016: Techmologies, Innovations” (Perm, 2016) [in Russian].Google Scholar
  16. 16.
    M. E. Kim, K. B. Murzagulova, and E. F. Stepanova, Fundam. Issl., No. 3, 766 (2014).Google Scholar
  17. 17.
    A. V. Pulya, I. I. Seifullina, L. S. Skorokhod, and V. G. Vlasenko, Russ. J. Gen. Chem. 83, 1134 (2013). doi  https://doi.org/10.1134/S1070363213090089 CrossRefGoogle Scholar
  18. 18.
    N. M. Samus’, V. I. Tsapkov, and O. V. Rudenko, Zh. Obshch. Khim. 66, 1258 (1996).Google Scholar
  19. 19.
    V. I. Tsapkov and N. M. Samus’, Zh. Obshch. Khim. 66, 1692 (1996).Google Scholar
  20. 20.
    D. Shingnapurkar, P. Dandawate, Ch. E. Anson, et al., Bioorg. Med. Chem. Lett. 22, 3172 (2012). doi  https://doi.org/10.1016/j.bmcl.2012.03.047 CrossRefGoogle Scholar
  21. 21.
    N. G. Klyuchnikov, Manual on Inorganic Synthesis (Khimiya, Moscow, 1965) [in Russian].Google Scholar
  22. 22.
    O. Kahn, Molecular Magnetism (VCH, New York, 1993).Google Scholar
  23. 23.
    A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instrum. Meth. Phys. Res., Sect. A 603, 95 (2009). doi  https://doi.org/10.1016/j.nima.2008.12.167 CrossRefGoogle Scholar
  24. 24.
    M. Newville, J. Synchrotron Rad., 8, 96 (2001). doi  https://doi.org/10.1107/S0909049500016290 CrossRefGoogle Scholar
  25. 25.
    S. I. Zabinski, J. J. Rehr, A. Ankudinov, and R. C. Alber, Phys. Rev. 52, 2995 (1995). doi  https://doi.org/10.1103/Phys-RevB.52.2995 CrossRefGoogle Scholar
  26. 26.
    G. Belford, R. L. Belford, and J. F. Burkhaven, J. Magn. Reson. 11, 251 (1973).Google Scholar
  27. 27.
    Yu. V. Rakitin, G. M. Larin, and V. V. Minin, Interpretation of EPR Spectra of Coordination Compounds (Nauka, Moscow, 1993) [in Russian].Google Scholar
  28. 28.
    Ya. S. Lebedev and V. I. Muromtsev, EPR and Relaxation of Stabilized Radicals (Khimiya, Moscow, 1972) [in Russian].Google Scholar
  29. 29.
    R. Wilson and D. Kivelson, J. Chem. Phys. 44, 154 (1966).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Pulya
    • 1
    Email author
  • I. I. Seifullina
    • 1
  • L. S. Skorokhod
    • 1
  • N. N. Efimov
    • 2
  • E. A. Ugolkova
    • 1
  • V. G. Vlasenko
    • 3
  • A. L. Trigub
    • 4
  • V. V. Minin
    • 2
  1. 1.Odessa Mechnikov National UniversityOdessaUkraine
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  4. 4.National Research Center “Kurchatov Institute,”MoscowRussia

Personalised recommendations