Skip to main content
Log in

Titanium Carbohydride Synthesis by Mechanical Activation in Liquid Hydrocarbon

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Mechanical activation of titanium in petroleum ether with subsequent heat treatment produced titanium carbohydrides with hexagonal close-packed and face-centered cubic lattices. The effect of iron and copper additions on the structural and phase composition of the titanium-based powders after the mechanical activation and heat treatment was studied. In these systems, both titanium carbohydrides, and the intermetallics Ti–Cu, Ti–Fe, and Ti–Fe–Cu formed. All the obtained powders contained ~1 wt % hydrogen. The release of hydrogen by heating the powders was investigated, and the lowest release temperatures (220–500°C) were detected for the phase Ti–Fe–Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Rexer, PhD Thesis “Ternary Metal–Carbon–Hydrogen Compounds of Some Transition Metals” (Iowa State Univ. Sci. Technol., Ames, IA, 1962) in Retrospective Theses and Dissertations, 2073.

  2. K. Yvon, H. Nowotny, and R. Kieffer, Monatsh. Chem. 98, 2164 (1967). doi 10.1007/BF00902411

    Article  CAS  Google Scholar 

  3. G. V. Samsonov, High-Melting Carbides (Nauk. dumka, Kiev, 1970) [in Russian].

    Google Scholar 

  4. V. F. Petrunin, Metallurgy and Metal Science of Pure Metals, Ed. by V. S. Emel’yanov and I. I. Evstyukhin (Atomizdat, Moscow, 1979), Issue 13, p. 120 [in Russian].

    Google Scholar 

  5. E. I. Sokolova, N. A. Martirosyan, and M. D. Nersesyan, Zh. Neorg. Khim. 26, 1949 (1981).

    CAS  Google Scholar 

  6. N. A. Martirosyan, S. K. Dolukhanyan, and A. G. Merzhanov, Combust., Explos. Shock Waves (Engl. Transl.) 17, 369 (1981). doi 10.1007/BF00761202

    Article  Google Scholar 

  7. I. S. Latergaus, V. T. Em, I. Karimov, et al., Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 1648 (1984).

    CAS  Google Scholar 

  8. S. S. Simonyan, E. V. Agababyan, S. K. Dolukhanyan, and S. S. Petrosyan, Izv. Akad. Nauk SSSR, Neorg. Mater. 26, 762 (1990).

    Google Scholar 

  9. S. K. Dolukhanyan, J. Alloys Compd. 253–254, 10 (1997). doi 10.1016/S0925-8388(96)03071-X

    Article  Google Scholar 

  10. A. G. Aleksanyan, N. N. Agadzhanyan, A. G. Akopyan, et al., Khim. Zh. Arm. 55, 4 (2002).

    CAS  Google Scholar 

  11. G. Renaudin, K. Yvon, S. K. Dolukhanyan, et al., J. Alloys Compd. 356–367, 120 (2003). doi 10.1016/S0925-8388(03)00107-5

    Article  CAS  Google Scholar 

  12. I. Khidirov, “Neutron Diffraction Study of Hydrogen Thermoemission Phenomenon from Powder Crystals,” in Neutron Diffraction, Ed. by I. Khidirov, InTech (2012). doi 10.5772/37597

    Chapter  Google Scholar 

  13. I. G. Khidirov, B. B. Mirzaev, N. N. Mukhtarova, et al., Al’tern. Energ. Ekol., No. 5, 49 (2007).

    Google Scholar 

  14. S. K. Dolukhanyan, N. N. Aghajanyan, H. G. Hakobyan, et al., J. Alloys Compd. 293–295, 452 (1999). doi 10.1016/S0925-8388(99)00335-7

    Article  Google Scholar 

  15. S. K. Dolukhanyan and N. N. Aghajanyan, (2008) “Receiving of Compact Carbides and Carbohydrides Based on Titanium and Vanadium,” in Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security. C: Environmental Security, Eds. by B. Baranowski, S. Yu. Zaginaichenko, D. V. Schur, V. V. Skorokhod, and A. Veziroglu (Springer, Dordrecht, The Netherlands, 2008).

    Google Scholar 

  16. I. Khidirov, Russ. J. Inorg. Chem. 62, 498 (2017). doi 10.7868/S0044457X17040080

    Article  CAS  Google Scholar 

  17. H. Goretzki, H. Bittner, and H. Nowotny, Monatsh. Chem. 95, 1521 (1964). doi 10.1007/BF00901707

    Article  CAS  Google Scholar 

  18. V. Zh. Shemet, A. P. Pomytkin, V. A. Lavrenko, and V. Zh. Ratushnaya, Int. J. Hydrogen Energy 18, 511 (1993). doi 10.1016/03603199(93)90008-X

    Article  CAS  Google Scholar 

  19. L. N. Padurets, E. I. Sokolova, and M. E. Kost, Zh. Neorg. Khim. 27, 1354 (1982).

    CAS  Google Scholar 

  20. N. N. Aghajanyan, S. K. Dolukhanyan, and O. P. Ter-Galstyan, Int. J. Hydrogen Energy 36, 1306 (2011). doi 10.1016/j.ijhydene.2010.06.134

    Article  CAS  Google Scholar 

  21. T. Suzuki and M. Nagumo, Scr. Metall. Mater. 27, 1413 (1992). doi 10.1016/0956-716X(92)90093-T

    Article  CAS  Google Scholar 

  22. T. Suzuki and M. Nagumo, Scr. Metall. Mater. 32, 1215 (1995). doi 10.1016/0956-716X(95)00128-I

    Article  CAS  Google Scholar 

  23. M. Nagumo, T. Suzuki, and K. Tsuchida, Mater. Sci. Forum 225–227, 581 (1996). doi 10.4028/www.scientific. net/MSF.225-227.581

    Article  Google Scholar 

  24. M. Nagumo, Mater. Trans., JIM 36, 170 (1995). doi 10.2320/matertrans1989.36.170

    Article  CAS  Google Scholar 

  25. A. I. Efimov, L. P. Belorukova, I. V. Vasil’kova, and V. P. Chechev, Properties of Inorganic Compounds: Handbook (Khimiya, Leningrad, 1983) [in Russian].

    Google Scholar 

  26. A. S. Bolokang, D. E. Motaung, C. J. Arendse, and T. F. G. Muller, Adv. Powder Technol. 26, 632 (2015).

    Article  CAS  Google Scholar 

  27. G. Sandrock, J. Alloys Compd. 293–295, 8778 (1999). doi 10.1016/S0925-8388(99)00384-9

    Google Scholar 

  28. R. J. Furlan and G. Bambakidis, J. Less-Common Met. 116, 375 (1976). doi 10.1016/0022-5088(86)90671-5

    Article  Google Scholar 

  29. D. V. Louzguine-Luzgin, L. V. Louzguina-Luzgina, T. Saito, et al., Mater. Sci. Eng., A 497, 126 (2008). doi 10.1016/j.msea.2008.06.020

    Article  CAS  Google Scholar 

  30. D. Khatamian and F. D. Manchester, Surf. Sci. 159, 381 (1985). doi 10.1016/0039-6028(85)90435-2

    Article  CAS  Google Scholar 

  31. J. Guedea, H. Yee-Madeira, and J. G. Cabanas, J. Mater. Sci. 39, 2523 (2004). doi 10.1023/B:JMSC. 0000020019.23220.98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Eremina.

Additional information

Original Russian Text © M.A. Eremina, S.F. Lomaeva, I.N. Burnyshev, D.G. Kalyuzhnyi, G.N. Konygin, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 10, pp. 1257–1265.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremina, M.A., Lomaeva, S.F., Burnyshev, I.N. et al. Titanium Carbohydride Synthesis by Mechanical Activation in Liquid Hydrocarbon. Russ. J. Inorg. Chem. 63, 1274–1282 (2018). https://doi.org/10.1134/S0036023618100066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618100066

Keywords

Navigation