Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 3, pp 387–390 | Cite as

Iron Extraction with Di(2-Ethylhexyl)dithiophosphoric Acid and a Binary Extractant Based on It

  • A. A. Voshkin
  • V. V. Belova
  • Yu. A. Zakhodyaeva
Physical Chemistry of Solutions

Abstract

Iron(III) extraction with trioctylmethylammonium di(2-ethylhexyl)dithiophosphate and di(2- ethylhexyl)dithiophosphoric acid was studied. It was shown that di(2-ethylhexyl)dithiophosphoric acid extracts iron in the form of the complex FeA2, regardless of the oxidation state of iron in the initial aqueous solution. It was also shown that the iron(III) extraction with trioctylmethylammonium di(2-ethylhexyl)dithiophosphate over a wide acidity range occurs primarily to produce extractable substance (R4N)FeCl4; and at pH > 1, iron(II) dialkyldithiophosphate is also extracted into the organic phase. It was established that, in a system with a binary extractant, iron can be efficiently stripped from the organic phase with water or diluted solutions of mineral acids.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Ordoñez, E. J. Gago, and A. Girard, Renewable Sustainable Energy Rev. 60, 195 (2016).CrossRefGoogle Scholar
  2. 2.
    K. Provazi, B. A. Campos, D. C. R. Espinosa, and J. A. S. Tenório, Waste Manage. 31, 59 (2011).CrossRefGoogle Scholar
  3. 3.
    J. M. Zhao, X. Y. Shen, F. L. Deng, et al., Sep. Purif. Technol. 78, 345 (2011).CrossRefGoogle Scholar
  4. 4.
    Y. Pranolo, W. Zhang, and C. Y. Cheng, Hydrometallurgy 102, 37 (2010).CrossRefGoogle Scholar
  5. 5.
    A. I. Khol’kin and V. I. Kuz’min, Zh. Neorg. Khim. 27, 2070 (1982).Google Scholar
  6. 6.
    A. I. Kholkin, G. L. Pashkov, I. Yu. Fleitlich, et al., Hydrometallurgy 36, 109 (1994).CrossRefGoogle Scholar
  7. 7.
    A. A. Voshkin, V. V. Belova, and A. I. Khol’kin, Russ. J. Inorg. Chem. 48, 608 (2003).Google Scholar
  8. 8.
    Yu. A. Zolotov, A. I. Khol’kin, V. V. Belova, et al., Khim. Tekhnol., No. 7, 14 (2002).Google Scholar
  9. 9.
    A. A. Voshkin, V. V. Belova, A. I. Khol’kin, and A. Agraval, Khim. Tekhnol., No. 11, 28 (2003).Google Scholar
  10. 10.
    I. S. Levin, V. V. Sergeeva, V. A. Tarasova, et al., Zh. Neorg. Khim. 18, 1643 (1973).Google Scholar
  11. 11.
    V. I. Kuz’min, T. A. Klimkina, and V. N. Kuz’mina, Russ. J. Appl. Chem. 72, 977 (1999).Google Scholar
  12. 12.
    P. P. Korostelev, Photometric and Complexometric Analysis in Metallurgy: A Handbook (Metallurgiya, Moscow, 1984) [in Russian].Google Scholar
  13. 13.
    Yu. A. Zolotov, B. Z. Iofa, and L. K. Chuchalin, Extraction of Halide Complexes of Metals (Nauka, Moscow, 1973) [in Russian].Google Scholar
  14. 14.
    Yu. A. Zolotov, I. V. Seryakova, I. I. Antipova-Karataeva, et al., Zh. Neorg. Khim. 7, 1197 (1962).Google Scholar
  15. 15.
    V. V. Belova, A. I. Khol’kin, T. I. Zhidkova, et al., Russ. J. Inorg. Chem. 42, 773 (1997).Google Scholar
  16. 16.
    V. I. Kuz’min, T. A. Klimkina, and O. A. Logutenko, Russ. J. Inorg. Chem. 43, 798 (1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Voshkin
    • 1
    • 2
    • 3
  • V. V. Belova
    • 1
  • Yu. A. Zakhodyaeva
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Technological UniversityMoscowRussia
  3. 3.Moscow Polytechnical UniversityMoscowRussia

Personalised recommendations