Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 3, pp 303–307 | Cite as

Tin Dioxide-Based Superacid Aerogels Produced Using Propylene Oxide

  • S. A. Lermontov
  • L. L. Yurkova
  • E. A. Straumal
  • A. E. Baranchikov
  • I. G. Shunina
  • E. I. Knerel’man
  • V. K. Ivanov
Synthesis and Properties of Inorganic Compounds
  • 13 Downloads

Abstract

Tin dioxide-based aerogels were produced by supercritical drying of gels, synthesized using propylene oxide, in CO2 and isopropanol. Aerogels consisted of nanocrystalline cassiterite and had a specific surface area of 210–270 m2/g. Sulfation with sulfuryl chloride imparted superacidic properties to the aerogels (the Hammett acidity function H0 reached values within the range – 11.99 ≥ H0 ≥ –12.7). Superacid SnO2 aerogels demonstrated high catalytic activity in 1-hexene oligomerization and isomerization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Scheideler, J. Jang, M. A. U. Karim, et al., ACS Appl. Mater. Interfaces 7, 12679 (2015).CrossRefGoogle Scholar
  2. 2.
    R. Rai, T. D. Senguttuvan, and S. T. Lakshmikumar, Comput. Mater. Sci. 37, 15 (2006).CrossRefGoogle Scholar
  3. 3.
    F. Lu, S. Chen, and S. Peng, Cat. Today 30, 183 (1996).CrossRefGoogle Scholar
  4. 4.
    H. Liu, V. Avrutin, N. Izyumskaya, et al., Superlattices Microstruct. 48, 458 (2010).CrossRefGoogle Scholar
  5. 5.
    C. Kim, M. Noh, M. Choi, et al., Chem. Mater. 17, 3297 (2005).CrossRefGoogle Scholar
  6. 6.
    A. V. Marikutsa, N. A. Vorob’eva, M. N. Rumyantseva, and A. M. Gas’kov, Russ. Chem. Bull. 66, 1728 (2017).CrossRefGoogle Scholar
  7. 7.
    T. F. Baumann, S. O. Kucheyev, A. E. Gash, and J. H. Satcher, Adv. Mater. 17, 1546 (2005).CrossRefGoogle Scholar
  8. 8.
    F. Lu and S.-Y, Chen, Stud. Surf. Sci. Catal. 91, 489 (1995).CrossRefGoogle Scholar
  9. 9.
    M. Hino, S. Takasaki, S. Furuta, et al., Appl. Cat. A 321, 147 (2007).CrossRefGoogle Scholar
  10. 10.
    X. Cui, H. Ma, B. Wang, and H. Chen, J. Hazard. Mater. 147, 800 (2007).CrossRefGoogle Scholar
  11. 11.
    H. Matsuhashi, H. Miyazaki, Y. Kawamura, et al., Chem. Mater. 13, 3038 (2001).CrossRefGoogle Scholar
  12. 12.
    B. Li and R. D. Gonzalez, Ind. Eng. Chem. Res. 35, 3141 (1996).CrossRefGoogle Scholar
  13. 13.
    D. A. Ward and E. I. Ko, J. Cat. 150, 18 (1994).CrossRefGoogle Scholar
  14. 14.
    S. A. Lermontov, L. L. Yurkova, E. A. Straumal, et al., Russ. J. Inorg. Chem. 61, 7 (2016).CrossRefGoogle Scholar
  15. 15.
    K. Tanabe, Solid Acids and Bases: Their Catalytic Properties (Academic, London, 2012).Google Scholar
  16. 16.
    A. E. Gash, T. M. Tillotson, J. H. Satcher, et al., J. Non-Cryst. Solids 285, 22 (2001).CrossRefGoogle Scholar
  17. 17.
    S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area, and Porosity (Academic, London, 1982).Google Scholar
  18. 18.
    B. J. Clapsaddle, B. Neumann, A. Wittstock, et al., J. Sol-Gel Sci. Technol. 64, 381 (2012).CrossRefGoogle Scholar
  19. 19.
    A. Du, B. Zhou, J. Shen, et al., J. Non-Cryst. Solids 355, 175 (2009).CrossRefGoogle Scholar
  20. 20.
    S. Lermontov, A. Malkova, L. Yurkova, et al., J. Supercrit. Fluids 89, 28 (2014).CrossRefGoogle Scholar
  21. 21.
    K. Tajiri, K. Igarashi, and T. Nishio, J. Non-Cryst. Solids 186, 83 (1995).CrossRefGoogle Scholar
  22. 22.
    J. R. Sohn, J. Ind. Chem. 10, 1 (2004).Google Scholar
  23. 23.
    A. K. Dalai, R. Sethuraman, S. P. R. Katikaneni, and R. O. Idem, Ind. Eng. Chem. Res. 37, 3869 (1998).CrossRefGoogle Scholar
  24. 24.
    R. Gómez, T. López, E. Ortiz-Islas, et al., J. Mol. Catal. A 193, 217 (2003).CrossRefGoogle Scholar
  25. 25.
    L. L. Yurkova, S. A. Lermontov, V. P. Kazachenko, et al., Inorg. Mater. 48, 1012 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Lermontov
    • 1
  • L. L. Yurkova
    • 1
  • E. A. Straumal
    • 1
  • A. E. Baranchikov
    • 2
  • I. G. Shunina
    • 3
  • E. I. Knerel’man
    • 3
  • V. K. Ivanov
    • 2
    • 4
  1. 1.Institute of Physiologically Active CompoundsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  4. 4.Lomonosov Institute of Fine Chemical TechnologiesMoscowRussia

Personalised recommendations