Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 3, pp 293–302 | Cite as

Synthesis and Luminescence Characteristics of LaF3:Yb:Er Powders Produced by Coprecipitation from Aqueous Solutions

  • S. V. Kuznetsov
  • A. N. Kozlova
  • V. V. Voronov
  • D. V. Pominova
  • A. V. Ryabova
  • R. P. Ermakov
  • K. S. Gavrichev
  • A. E. Baranchikov
  • A. V. Khoroshilov
  • P. P. Fedorov
Synthesis and Properties of Inorganic Compounds

Abstract

Hydrated lanthanum fluoride powders, both undoped, and doped with erbium and ytterbium fluorides (to a total content of 6–28 mol %), of the general formula RF3 · nH2O (n = 0.30 ± 0.01), crystallizing in the hexagonal system, were obtained by coprecipitation from aqueous solutions of the corresponding nitrates by the interaction with hydrofluoric acid. The dehydration is completed at 380°C. At 600°C, the concentrated solid solution decomposes to precipitate a phase with the structure of orthorhombic YF3. The efficiency of the upconversion luminescence of the powders, excited at a wavelength of 974 nm, is low.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Ovsyankin and P. P. Feofilov, JETP Lett. 3, 322 (1966).Google Scholar
  2. 2.
    F. Auzel, C. R. Acad. Sci. 262, 1016 (1966).Google Scholar
  3. 3.
    M. Haase and H. Schaefer, Angew. Chem., Int. Ed. Engl. 50, 5808 (2011).CrossRefGoogle Scholar
  4. 4.
    X. He, K. Wang, and Z. Cheng, WIREs Nanomed. Nanobiotec. 2, 349 (2010).CrossRefGoogle Scholar
  5. 5.
    F. Wang and X. Liu, Chem. Soc. Rev. 38, 976 (2009).CrossRefGoogle Scholar
  6. 6.
    M. Wang, G. Abbineni, A. Clevenger, et al., Nanomed. Nanotechnol. Biol. Med. 7, 710 (2011).CrossRefGoogle Scholar
  7. 7.
    D. V. Pominova, A. V. Ryabova, P. V. Grachev, et al., J. Biomed. Opt. 21, 096002 (2016).CrossRefGoogle Scholar
  8. 8.
    N. Menyuk, K. Dwight, and J. W. Pierce, Appl. Phys. Lett. 21, 159 (1972).CrossRefGoogle Scholar
  9. 9.
    J.-C. Boyer and F. C. J. van Veggel, Nanoscale 2, 1417 (2010).CrossRefGoogle Scholar
  10. 10.
    1st Conference and Spring School on Properties, Design and Applications of Upconverting Nanomaterials, 23–27 May 2016, Wroclaw, Poland: Conference Book, Ed. by A. Bednarkiewicz (Inst. Low Temp. Struct. Res., Pol. Acad. Sci., 2016).Google Scholar
  11. 11.
    P. P. Fedorov, S. V. Kuznetsov, and V. V. Osiko, in Photonic and Electronic Properties of Fluoride Materials, Ed. by A. Tressaud and K. Poeppelmeier (Elsevier, Amsterdam, 2016).Google Scholar
  12. 12.
    Yu. A. Rozhnova, S. V. Kuznetsov, A. A. Luginina, et al., Math. Chem. Phys. 172, 150 (2016).CrossRefGoogle Scholar
  13. 13.
    R. G. Vakhrenev, M. N. Mayakova, S. V. Kuznetsov, et al., Condensed Matter Interphases 18, 487 (2016).Google Scholar
  14. 14.
    A. Biswas, G. S. Maciel, C. S. Friend, and P. N. Prasad, J. Non-Cryst. Solids 316, 393 (2003).CrossRefGoogle Scholar
  15. 15.
    J. Zhang, W. Qin, D. Zhao, et al., J. Lumin. 122–123, 506 (2007).CrossRefGoogle Scholar
  16. 16.
    J. Wang, J. Hu, D. Tang, et al., J. Mater. Chem. 17, 1597 (2007).CrossRefGoogle Scholar
  17. 17.
    D. Zhang, C. Chen, F. Wang, and D. M. Zhang, Appl. Phys. B 98, 791 (2010).CrossRefGoogle Scholar
  18. 18.
    Y. Yang, Y. Qu, J. Zhao, et al., Eur. J. Inorg. Chem. 33, 5195 (2010).CrossRefGoogle Scholar
  19. 19.
    A. K. Singh, K. Kumar, A. C. Pandey, et al., Appl. Phys. B 104, 1035 (2011).CrossRefGoogle Scholar
  20. 20.
    G. Gorni, R. Balda, J. Fernández, et al., J. Lumin. 193, 51 (2018). doi 10.1016/j.jlumin.2017.05.063CrossRefGoogle Scholar
  21. 21.
    K. Wang, J. Ma, M. He, et al., Theranostics 3, 258 (2013).CrossRefGoogle Scholar
  22. 22.
    L. R. Batsanova, Usp. Khim. 40, 945 (1971)CrossRefGoogle Scholar
  23. 23.
    B. P. Sobolev, The Rare Earth Trifluorides, Part 1: The High Temperature Chemistry of the Rare Earth Trifluorides (Barcelona, Inst. d’Estud. Catal., 2000).Google Scholar
  24. 24.
    P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko, J. Fluorine Chem. 132, 1012 (2011).CrossRefGoogle Scholar
  25. 25.
    G. Scholz, K. Meyer, A. Duvel, et al., Z. Anorg. Allg. Chem. 639, 960 (2013).CrossRefGoogle Scholar
  26. 26.
    L. B. Gulina, M. Schäfer, A. F. Privalov, et al., J. Fluorine Chem. 188, 185 (2016).CrossRefGoogle Scholar
  27. 27.
    I. A. Razumkova, A. N. Boiko, O. V. Andreev, and S. A. Basova, Russ. J. Inorg. Chem. 62, 418 (2017).CrossRefGoogle Scholar
  28. 28.
    P. P. Fedorov, A. A. Luginina, and A. I. Popov, J. Fluorine Chem. 172, 22 (2015).CrossRefGoogle Scholar
  29. 29.
    P. P. Fedorov, S. V. Kuznetsov, M. N. Mayakova, et al., Russ. J. Inorg. Chem. 56, 1525 (2011).CrossRefGoogle Scholar
  30. 30.
    P. P. Fedorov, M. N. Mayakova, S. V. Kuznetsov, et al., Mater. Res. Bull. 47, 1794 (2012).CrossRefGoogle Scholar
  31. 31.
    F. L. Berre, E. Boucher, M. Allain, and G. Courbion, J. Mater. Chem. 10, 2578 (2000).CrossRefGoogle Scholar
  32. 32.
    B. E. G. Lucier, K. E. Johnston, D. C. Arnold, et al., J. Phys. Chem. C 118, 1213 (2014).CrossRefGoogle Scholar
  33. 33.
    M. N. Mayakova, V. V. Voronov, L. D. Iskhakova, et al., J. Fluorine Chem. 187, 33 (2016).CrossRefGoogle Scholar
  34. 34.
    Yu. M. Kiselev, V. I. Spitsin, and L. I. Martynenko, Izv. Akad. Nauk SSSR. Ser. Khim., No. 4, 729 (1973).Google Scholar
  35. 35.
    B. P. Sobolev, P. P. Fedorov, A. K. Galkin, et al., Growth of Crystals. 13, 229 (1986).Google Scholar
  36. 36.
    V. S. Sidorov, P. P. Fedorov, D. D. Ikrami, and B. P. Sobolev, Proceedings of the V All-Union Symposium on Chemistry of Inorganic Fluorides (Nauka, Moscow, 1978), p. 258 [in Russian].Google Scholar
  37. 37.
    www.pavel-fedorov.sitecity.ru.Google Scholar
  38. 38.
    P. P. Fedorov, Russ. J. Inorg. Chem. 55, 1722 (2010).CrossRefGoogle Scholar
  39. 39.
    P. P. Fedorov and B. P. Sobolev, Crystallogr. Rep. 40, 284 (1995).Google Scholar
  40. 40.
    P. P. Fedorov, P. I. Fedorov, and B. P. Sobolev, Zh. Neorg. Khim. 18, 3319 (1973).Google Scholar
  41. 41.
    P. P. Fedorov, Russ. J. Inorg. Chem. 56, 959 (2011).Google Scholar
  42. 42.
    P. P. Fedorov, M. N. Mayakova, S. V. Kuznetsov, et al., Russ. J. Inorg. Chem. 61, 1472 (2016).CrossRefGoogle Scholar
  43. 43.
    P. P. Fedorov, M. N. Mayakova, S. V. Kuznetsov, and V.V. Voronov, Russ. J. Inorg. Chem. 62, 1173 (2017).CrossRefGoogle Scholar
  44. 44.
    D. A. Jons and W. A. Shand, J. Cryst. Growth 2, 361 (1968).CrossRefGoogle Scholar
  45. 45.
    O. V. Kudryavtseva, L. S. Garashina, K. K. Rivkina, and B. P. Sobolev, Kristallografiya 18, 843 (1973).Google Scholar
  46. 46.
    O. Greis and J. M. Haschke, Handbook on the Physics and Chemistry of Rare Earth, Ed. by K. A. Gschneidner and L. Eyring (Elsevier, Amsterdam, 1982), Vol. 5, pp. 387–460.CrossRefGoogle Scholar
  47. 47.
    S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, et al., Phys. Rev. B 72, 014127 (2005).CrossRefGoogle Scholar
  48. 48.
    E. A. Zhurova, B. A. Maksimov, S. Hull, et al., Crystallogr. Rep. 42, 238 (1997).Google Scholar
  49. 49.
    B. P. Sobolev, V. B. Aleksandrov, P. P. Fedorov, et al., Sov. Phys. Crystallogr. 21, 49 (1976).Google Scholar
  50. 50.
    P. P. Fedorov, Russ. J. Inorg. Chem. 44, 1703 (1999).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Kuznetsov
    • 1
  • A. N. Kozlova
    • 1
  • V. V. Voronov
    • 1
  • D. V. Pominova
    • 1
  • A. V. Ryabova
    • 1
  • R. P. Ermakov
    • 1
  • K. S. Gavrichev
    • 2
  • A. E. Baranchikov
    • 2
  • A. V. Khoroshilov
    • 2
  • P. P. Fedorov
    • 1
  1. 1.Prokhorov Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations