Russian Journal of Inorganic Chemistry

, Volume 63, Issue 3, pp 349–356 | Cite as

New Hybrid Material: (C3H6N3)4Bi2Cl10. Synthesis, Structural Study and Spectroscopic Behavior

  • Hela Ferjani
  • Habib Boughzala
Coordination Compounds


The structure of (C3H6N3)4Bi2Cl10 was determined by single crystal X-ray diffraction at room temperature. It crystallizes in the orthorhombic space group Pcmn, with a = 9.430 (1) Å, b = 17.426 (3) Å, c = 19.883(5) Å, V = 3267.3 (11) Å3 and Z = 4. The structure consists of discrete binuclear [Bi2Cl10]4– anions and 3-aminopyrazolium cations. The crystal packing is governed by weak N–H···Cl hydrogen bonds, π–π and electrostatic Cl···Cl interactions. Infrared spectrum is used to gain more information on the title compound. An assignment of the observed vibration modes is reported. The crystal morphology is studied using the BFDH laws. The calculated HOMO and LUMO energies show that charge transfer occur within organic and inorganic molecules. The optical absorption of the zero-dimensional hybrid was also investigated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Lü, E. H. Shen, Y. G. Li, et al., Cryst. Growth & Des. 5, 65 (2005).CrossRefGoogle Scholar
  2. 2.
    D.B. Mitzi and P. Brock, Inorg. Chem. 40, 2096 (2001).CrossRefGoogle Scholar
  3. 3.
    H. Ferjani, H. Boughzala, and A. Driss, Acta Crystallogr. Sect. E 68, m615 (2012).CrossRefGoogle Scholar
  4. 4.
    M. A. Tershansy, A. M. Goforth, M. D. Smith, et al., Acta Crystallogr. Sect. E 62, m3269 (2006).CrossRefGoogle Scholar
  5. 5.
    A. Piecha, R. Jakubas, G. Bator, and J. Baran, Vib. Spectrosc. 51, 226 (2009).CrossRefGoogle Scholar
  6. 6.
    T. Ben Rhayem, H. Boughzala, A. Driss, Acta Crystallogr. Sect. E 69, m330 (2013).CrossRefGoogle Scholar
  7. 7.
    D. B. Mitzi, C. D. Dimitrakopoulos, J. Rosner, et al., Adv. Mater. 14, 1772 (2002).CrossRefGoogle Scholar
  8. 8.
    D. B. Mitzi, K. Chondroudis, and C. R. Kagan, IBM. J. Res. Dev. 45 (1), 29 (2001).CrossRefGoogle Scholar
  9. 9.
    W. Bi, N. Louvain, N. Mercier, et al., Adv. Mater. 20, 1013 (2008).CrossRefGoogle Scholar
  10. 10.
    A. M. Goforth, L. Peterson, Jr., M. D. Smith., and H.-C. Z. Loye., J. Solid State Chem. 178, 3529 (2005).CrossRefGoogle Scholar
  11. 11.
    G. C. Papavassiliou, G. A. Mousdis, C. P. Raptopoulou, and A. Terzis, Z. Naturforsch., B: Chem. Sci. 54, 1405 (1999).Google Scholar
  12. 12.
    C. Feldmann, J. Solid State Chem. 172, 53 (2003).CrossRefGoogle Scholar
  13. 13.
    H. Krautscheild and F. Vielsack, J. Chem. Soc., Dalton Trans. 16, 2731 (1999).CrossRefGoogle Scholar
  14. 14.
    G. A. Fisher and N. C. Norman, Adv. Inorg. Chem. 41, 233 (1994).CrossRefGoogle Scholar
  15. 15.
    A. J. M. Duisenberg, J. Appl. Crystallogr. 25, 92 (1992).CrossRefGoogle Scholar
  16. 16.
    A. C. T. North, D. C. Phillips, and F. S. Mathews, Acta Crystallogr., Sect. A: Found. Crystallogr. 24, 351 (1968).CrossRefGoogle Scholar
  17. 17.
    G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 112 (2008).CrossRefGoogle Scholar
  18. 18.
    K. Brandenburg, DIAMOND, Crystal Impact (GbR, Bonn, Germany, 2008).Google Scholar
  19. 19.
    Mercury CSD 3.0.1 (Build RC6) (Cambridge Crystallographic Data Centre (CCDC), 2013).Google Scholar
  20. 20.
    A. Coelho, Topas V 4.2 (Bruker AXS, 2007–2009).Google Scholar
  21. 21.
    J. P. H. Charmant, N. C. Norman, J. Starbuck, Acta Crystallogr. Sect. E 58, m144 (2002).CrossRefGoogle Scholar
  22. 22.
    G. A. Bowmaker, P. C. Junk, A. M. Lee, et al., Aust. J. Chem. 51, 293 (1998).CrossRefGoogle Scholar
  23. 23.
    A. Bravais, Etudes Cristallographiques (Gauthier-Villars, Paris, France, 1913).Google Scholar
  24. 24.
    G. Fridel, Bull. Soc. Fr. 30, 326 (1907).Google Scholar
  25. 25.
    J. D. H. Donnay and D. Harker, Am. Mineral. 22, 446 (1937).Google Scholar
  26. 26.
    V. M. Leovac, Z. D. Tomić, A. Kovács, et al., J. Organomet. Chem. 693, 77 (2008).CrossRefGoogle Scholar
  27. 27.
    J. A. Jimenez, R. M. Claramunt, O. Mó, et al., Phys. Chem. Chem. Phys. 1, 5113 (1999).CrossRefGoogle Scholar
  28. 28.
    E. Kavitha, N. Sundaranganesan, and S. Sebastian, Ind. J. Pure Appl. Phys. 48, 20 (2010).Google Scholar
  29. 29.
    O. Prasad, L. Sinha, and N. Kumar, J. At. Mol. Sci. 1, 201 (2010).Google Scholar
  30. 30.
    I. Fleming, Frontier Orbitals and Organic Chemical Reactions (Wiley, New York, 1976).Google Scholar
  31. 31.
    Cache: Work System Pro Version (Fujitsu Limited. 2000–2006 Oxford Molecular).Google Scholar
  32. 32.
    D. F. V. Lewis, C. Ioannides, and D. V. Parke, Xenobiotica. 24, 401 (1994).CrossRefGoogle Scholar
  33. 33.
    K. Oldenburg, A. Vogler, I. Mikό, and O. Horváth, Inorg. Chim. Acta 248, 107 (1996).CrossRefGoogle Scholar
  34. 34.
    A. Vogler, A. Paukner, and H. Kunkely, Coord. Chem. Rev. 97, 285 (1990).CrossRefGoogle Scholar
  35. 35.
    A. Vogler and H. Nikol, Pure Appl. Chem. 64, 1311 (1992).CrossRefGoogle Scholar
  36. 36.
    H. Nikol and A. Vogler, J. Amer. Chem. Soc. 113, 8986 (1991).CrossRefGoogle Scholar
  37. 37.
    W. R. Mason, Inorg. Chem. 38, 2742 (1999).CrossRefGoogle Scholar
  38. 38.
    M. V. S. Prasad, K. Chaitanya, N. U. Sri, and V. Veeraiah, Spectrochim. Acta, Pt A: Mol. Biomol. Spectrosc. 99, 379 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Chemistry Department, College of ScienceIMSIU (Al Imam Mohammad Ibn Saud Islamic University)RiyadhKingdom of Saudi Arabia
  2. 2.Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El ManarManar II TunisTunisTunisia

Personalised recommendations