Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 3, pp 364–368 | Cite as

Hydrogenation and Dehydrogenation of the Clathrate Na x Si136

  • V. S. Efimchenko
  • O. I. Barkalov
  • V. I. Kulakov
  • V. B. Son
  • K. P. Meletov
  • B. M. Bulychev
  • I. A. Sholin
  • D. I. Kapustin
  • D. V. Matveev
Physical Methods of Investigation
  • 14 Downloads

Abstract

Samples of the clathrate Na x Si136 were saturated with hydrogen to 100 atm at 25°C in a Sievertstype apparatus and at pressures of 6 and 28 kbar in lentil-type high-pressure apparatuses at 100 and 250°C. X-ray powder diffraction analysis and Raman spectroscopy of the samples quenched after the saturation with hydrogen showed that the phase composition of the clathrates did not change. Heating of the quenched samples to room temperature in a thermal desorption setup produced not hydrogen, but hydrogen-containing gases, as we assumed, silanes. Heating to 650°C leads to decomposition of these compounds to form hydrogen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Kasper, P. Hagenmuller, and M. Pouchard, Science 150, 1713 (1965).CrossRefGoogle Scholar
  2. 2.
    G. K. Ramachandran, P. F. McMillan, J. J. Dong, et al., J. Solid State Chem. 154, 626 (2000).CrossRefGoogle Scholar
  3. 3.
    S. Latturner, B. B. Iverson, J. Sepa, et al., Phys. Rev. B 63, 125403 (2001).CrossRefGoogle Scholar
  4. 4.
    G. K. Ramachandran, J. Dong, and J. Diefenbacher, J. Solid State Chem. 145, 716 (1999).CrossRefGoogle Scholar
  5. 5.
    J. L. Cohn, G. S. Nolas, V. Fessatidis, et al., Phys. Rev. Lett. 82, 779 (1999).CrossRefGoogle Scholar
  6. 6.
    G. Nolas, T. Weakley, J. Cohn, et al., Phys. Rev. B 61, 3845 (2000).CrossRefGoogle Scholar
  7. 7.
    S. Yamanaka, E. Enishi, H. Fukuoka, et al., Inorg. Chem. 39, 56 (2000).CrossRefGoogle Scholar
  8. 8.
    D. Neiner, N. L. Okamoto, and C. L. Condron, J. Am. Chem. Soc. 129, 13857 (2007).CrossRefGoogle Scholar
  9. 9.
    D. Neiner, N. L. Okamoto, and P. Yu, Inorg. Chem. 49, 815 (2010).CrossRefGoogle Scholar
  10. 10.
    A. Ammar, C. Cros, M. Pouchard, et al., Solid State Sci. 393, 4006 (2004).Google Scholar
  11. 11.
    A. Ammar, C. Cros, M. Pouchard, et al., J. Phys. IV Fr. 123, 29 (2005).CrossRefGoogle Scholar
  12. 12.
    V. E. Antonov, I. O. Bashkin, S. S. Khasanov, et al., J. Alloys Comp. 330–332, 365 (2002).CrossRefGoogle Scholar
  13. 13.
    V. B. Son, A. A. Volodin, R. V. Denis, et al., Izv. Akad. Nauk, Ser. Khim., No. 8, 1971 (2016).Google Scholar
  14. 14.
    V. B. Son, Yu. Ya. Shimkus, B. P. Tarasov, et al., Al’tern. Energ. Ekol., No. 21, 100 (2015).Google Scholar
  15. 15.
    V. E. Antonov, I. O. Bashkin, A. V. Bazhenov, et al., Carbon 100, 465 (2016).CrossRefGoogle Scholar
  16. 16.
    V. S. Efimchenko, V. K. Fedotov, M. A. Kuzovnikov, et al., J. Phys. Chem. A 118, 10268 (2014).CrossRefGoogle Scholar
  17. 17.
    E. Reny, P. Gravereau, C. Croset, et al., J. Mater. Chem. 8, 2839 (1998).CrossRefGoogle Scholar
  18. 18.
    V. S. Efimchenko, V. E. Antonov, O. I. Barkalov, et al., J. Phys. Chem. B 112, 7026 (2008).CrossRefGoogle Scholar
  19. 19.
    W. L. Mao, H.-K. Mao, A. F. Goncharov, et al., Science 297, 2247 (2002).CrossRefGoogle Scholar
  20. 20.
    E. Hohmann, Z. Anorg. Allg. Chem. 257, 113 (1948).CrossRefGoogle Scholar
  21. 21.
    R. R. B. Correia, S. L. Cunha, R. Vivie-Riedle, et al., Chem. Phys. Lett. 186, 531 (1991).CrossRefGoogle Scholar
  22. 22.
    W. S. Tang, J.-N. Chotard, P. Raybaud, et al., Phys. Chem. Chem. Phys. 14, 13319 (2012).CrossRefGoogle Scholar
  23. 23.
    I. K. Kikoin, Tables of Physical Quantities (Atomizdat, Moscow, 1976) [in Russian].Google Scholar
  24. 24.
    B. Arkles, Silanes, Reprint from Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 22, pp. 38–69 (Gelest, Tullytown, Pa., 1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. S. Efimchenko
    • 1
  • O. I. Barkalov
    • 1
  • V. I. Kulakov
    • 1
  • V. B. Son
    • 2
  • K. P. Meletov
    • 1
  • B. M. Bulychev
    • 3
  • I. A. Sholin
    • 1
  • D. I. Kapustin
    • 3
  • D. V. Matveev
    • 1
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations