Skip to main content
Log in

Production of HfB2–SiC (10–65 vol % SiC) Ultra-High-Temperature Ceramics by Hot Pressing of HfB2–(SiO2–C) Composite Powder Synthesized by the Sol–Gel Method

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The formation of HfB2–SiC (10–65 vol % SiC) ultra-high-temperature ceramics by hot pressing of HfB2–(SiO2–C) composite powder synthesized by the sol–gel method was studied. By the example of HfB2–30 vol % SiC ceramic, it was shown that the synthesis of nanocrystalline silicon carbide is completed at temperatures of as low as ≥1700°C (crystallite size 35–39 nm). The production of the composite materials with various contents of fine silicon carbide at 1800°C demonstrated that the samples of the composition HfB2–SiC (20–30 vol % SiC) are characterized by the formation of SiC crystallites of the minimum sizes (36–38 nm), by the highest density (89%), and by higher oxidation resistance during heating in an air flow to 1400°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Simonenko, D. V. Sevast’yanov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 58, 1669 (2013). doi 10.1134/S0036023613140039

    Article  CAS  Google Scholar 

  2. L. Silvestroni, H.-J. Kleebe, W. G. Fahrenholtz, and J. Watts, Sci. Rep. 7, Art. no. 40730 (2017). doi 10.1038/srep40730

    Google Scholar 

  3. E. P. Simonenko, A. N. Gordeev, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1203 (2016). doi 10.1134/S003602361610017X

    Article  CAS  Google Scholar 

  4. M. Mallik, A. J. Kailath, K. K. Ray, et al., J. Eur. Ceram. Soc. 37, 559 (2017). doi 10.1016/j.jeurceramsoc.2016.09.024

    Article  CAS  Google Scholar 

  5. A. Nisar, S. Ariharan, T. Venkateswaran, et al., Carbon 111, 269 (2017). doi 10.1016/j.carbon.2016.10.002

    Article  CAS  Google Scholar 

  6. V. G. Sevast’yanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 58, 1269 (2013). doi 10.1134/S003602361311017X

    Article  Google Scholar 

  7. M. Asl Shahedi, F. Golmohammadi, M. Ghassemi Kakroudi, and M. Shokouhimehr, Ceram. Int. 42, 4498 (2016). doi 10.1016/j.ceramint.2015.11.139

    Article  Google Scholar 

  8. M. Asl Shahedi, M. Ghassemi Kakroudi, I. Farahbakhsh, et al., Ceram. Int. 42, 18612 (2016). doi 10.1016/j.ceramint.2016.08.20

    Article  Google Scholar 

  9. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1298 (2014). doi 10.1134/S0036023614110217

    Article  CAS  Google Scholar 

  10. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1361 (2014). doi 10.1134/S0036023614120250

    Article  CAS  Google Scholar 

  11. L. Wang, D. Kong, G. Fang, and J. Liang, Int. J. Appl. Ceram. Technol. 14, 31 (2017). doi 10.1111/ijac.12613

    Article  CAS  Google Scholar 

  12. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 60, 1360 (2015). doi 10.1134/S0036023615110133

    Article  CAS  Google Scholar 

  13. M. Patel, V. Singh, and V. V. B. Prasad, Oxid. Met. 86, 339 (2016).

    Article  CAS  Google Scholar 

  14. D. V. Grashchenkov, O. Yu. Sorokin, Yu. E. Lebedeva, and M. L. Vaganova, Russ. J. Appl. Chem. 88, 386 (2015).

    Article  CAS  Google Scholar 

  15. Yu. B. Lyamin, V. Z. Poilov, E. N. Pryamilova, et al., Russ. J. Inorg. Chem. 61, 149 (2016). doi 10.1134/S0036023616020133

    Article  CAS  Google Scholar 

  16. W. Tan, M. Adducci, C. Petorak, et al., J. Eur. Ceram. Soc. 36, 3833 (2016). doi 10.1016/j.jeurceramsoc.2016.04.013

    Article  CAS  Google Scholar 

  17. D. L. Poerschke, M. D. Novak, N. Abdul-Jabbar, et al., J. Eur. Ceram. Soc. 36, 3697 (2016). doi 10.1016/j.jeurceramsoc.2016.05.048

    Article  CAS  Google Scholar 

  18. D. V. Kolovertnov and I. B. Ban’kovskaya, Glass Phys. Chem. 41, 324 (2015).

    Article  CAS  Google Scholar 

  19. B. Du, N. Li, B. Ke, et al., Ceram. Int. 42, 14292 (2016). doi 10.1016/j.ceramint.2016.06.041

    Article  CAS  Google Scholar 

  20. Y. An, X. Xu, and K. Gui, Ceram. Int. 42, 14066 (2016). doi 10.1016/j.ceramint.2016.06.014

    Article  CAS  Google Scholar 

  21. X. Jin, L. Dong, Q. Li, et al., Ceram. Int. 42, 13309 (2016). doi 10.1016/j.ceramint.2016.05.040

    Article  CAS  Google Scholar 

  22. B. Zhang, X. Zhang, C. Hong, et al., ACS Appl. Mater. Interfaces 8, 11675 (2016). doi 10.1021/acsami.6b00822

    Article  CAS  Google Scholar 

  23. H. Jin, S. Meng, X. Zhang, et al., J. Am. Ceram. Soc. 99, 2474 (2016). doi 10.1111/jace.14232

    Article  CAS  Google Scholar 

  24. L. A. Chevykalova, I. Yu. Kelina, I. L. Mikhal’chik, et al., Refract. Ind. Ceram. 54, 455 (2014).

    Article  CAS  Google Scholar 

  25. X. Jin, L. Dong, H. Xu, et al., Ceram. Int. 42, 9051 (2016). doi 10.1016/j.ceramint.2016.02.164

    Article  CAS  Google Scholar 

  26. H. Jin, S. Meng, X. Zhang, et al., J. Eur. Ceram. Soc. 36, 1855 (2016). doi 10.1016/j.jeurceramsoc.2016.02.040

    Article  CAS  Google Scholar 

  27. Yoon D.-H. Muksin and K. Raju, Ceram. Int. 42, 7300 (2016). doi 10.1016/j.ceramint.2016.01.126

    Article  CAS  Google Scholar 

  28. Y. Yuan, J.-X. Liu, and G.-J. Zhang, Ceram. Int. 42, 7861 (2016). doi 10.1016/j.ceramint.2016.01.067

    Article  CAS  Google Scholar 

  29. Z. Kovacova, L. Baca, E. Neubauer, and M. Kitzmantel, J. Eur. Ceram. Soc. 36, 3041 (2016). doi 10.1016/j.jeurceramsoc.2015.12.028

    Article  CAS  Google Scholar 

  30. H. Jin, S. Meng, X. Zhang, et al., Ceram. Int. 42, 6480 (2016). doi 10.1016/j.ceramint.2015.12.132

    Article  CAS  Google Scholar 

  31. M. Asl Shahedi, A. Sabahi Namini, and M. Ghassemi Kakroudi, Ceram. Int. 42, 5375 (2016). doi 10.1016/j.ceramint.2015.12.072

    Article  Google Scholar 

  32. X. Zhang, Z. Chen, X. Xiong, et al., Ceram. Int. 42, 2798 (2016). doi 10.1016/j.ceramint.2015.11.012

    Article  CAS  Google Scholar 

  33. Y. Yan, Z. Huang, S. Dong, and D. Jiang, J. Am. Ceram. Soc. 89, 3589 (2006). doi 10.1111/j.1551-2916.2006.01270.x

    Article  CAS  Google Scholar 

  34. S. Guo, J. Yang, H. Tanaka, and Y. Kagawa, Compos. Sci. Technol. 68, 3033 (2008).

    Article  CAS  Google Scholar 

  35. H. Zhang, Y. Yan, Z. Huang, et al., Key Eng. Mater. 434435, 193 (2010). doi 10.4028/www.scientific.net/KEM.434-435.193

    Article  Google Scholar 

  36. M. Ikegami, S. Guo, and Y. Kagawa, Ceram. Int. 38, 769 (2012).

    Article  CAS  Google Scholar 

  37. V. Zamora, A. L. Ortiz, F. Guiberteau, and M. Nygren, J. Eur. Ceram. Soc. 32, 2529 (2012).

    Article  CAS  Google Scholar 

  38. W. Han, S. Zhou, and J. Zhang, Ceram. Int. 40, 16665 (2014).

    Article  CAS  Google Scholar 

  39. M. Mashhadi, H. Khaksari, and S. Safi, J. Mater. Res. Technol. 4, 416 (2015).

    Article  CAS  Google Scholar 

  40. M. Jaberi Zamharir, M. Shahedi Asl, M. Ghassemi Kakroudi, et al., Ceram. Int. 41, 9628 (2015).

    Article  CAS  Google Scholar 

  41. E. P. Simonenko, N. P. Simonenko, G. P. Kopitsa, et al., Russ. J. Inorg. Chem. 61, 1347 (2016). doi 10.1134/S0036023616110206

    Article  CAS  Google Scholar 

  42. V. G. Sevastyanov, E. P. Simonenko, N. P. Simonenko, et al., Kompoz. Nanostrukt. 6 (4), 198 (2014).

    CAS  Google Scholar 

  43. E. P. Simonenko, N. P. Simonenko, A. V. Derbenev, et al., Russ. J. Inorg. Chem. 58, 1143 (2013). doi 10.1134/S0036023613100215

    Article  CAS  Google Scholar 

  44. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 61, 1483 (2016). doi 10.1134/S0036023616120172

    Article  CAS  Google Scholar 

  45. E. P. Simonenko, N. P. Simonenko, D. V. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 1649 (2016). doi 10.1134/S0036023616130039

    Article  CAS  Google Scholar 

  46. H. Zhang, F. Fu, Y. Cao, et al., Interceram. 62, 282 (2013).

    CAS  Google Scholar 

  47. T. Wang, Y. Zhang, J. Li, et al., J. Nanosci. Nanotechnol. 15, 7402 (2015). doi 10.1166/jnn.2015.10583

    Article  CAS  Google Scholar 

  48. Y. Cao, H. Zhang, F. Li, et al., Ceram. Int. 41, 7823 (2015). doi 10.1016/j.ceramint.2015.02.117

    Article  CAS  Google Scholar 

  49. Y. Zhang, Y. Zhang, R.-X. Li, et al., J. Taiwan Inst. Chem. Eng. 46, 200 (2015). doi 10.1016/j.jtice.2014.09.022

    Article  CAS  Google Scholar 

  50. B. Zhao, Y. Zhang, J. Li, et al., J. Solid State Chem. 207, 1 (2013). doi 10.1016/j.jssc.2013.08.028

    Article  CAS  Google Scholar 

  51. Y. Yan, H. Zhang, Z. Huang, et al., J. Am. Ceram. Soc. 91, 1372 (2008). doi 10.1111/j.1551-2916.2008.02296.x

    Article  CAS  Google Scholar 

  52. N. Patra, D. D. Jayaseelan, and W. E. Lee, Adv. Appl. Ceram. 115, 36 (2016).

    Article  CAS  Google Scholar 

  53. X. P. Che, S. Z. Zhu, L. J. Yang, and Q. Xu, Adv. Mater. Res. 105106, 213 (2010).

    Article  Google Scholar 

  54. X. Deng, S. Du, H. Zhang, et al., Ceram. Int. 41, 14419 (2015).

    Article  CAS  Google Scholar 

  55. S. Chakraborty, D. Debnath, A. R. Mallick, et al., Int. J. Refract. Met. Hard Mater. 52, 176 (2015).

    Article  CAS  Google Scholar 

  56. D. Debnath, S. Chakraborty, A. R. Mallick, et al., Adv. Appl. Ceram. 114, 45 (2015).

    Article  CAS  Google Scholar 

  57. M. Jalaly, M. Tamizifar, M. S. Bafghi, and F. J. Gotor, J. Alloys Compd. 581, 782 (2013).

    Article  CAS  Google Scholar 

  58. M. Jalaly, M. S.-S. Bafghi, M. Tamizifar, and F. J. Gotor, Int. J. Appl. Ceram. Technol. 12, 551 (2015).

    Article  CAS  Google Scholar 

  59. W.-W. Wu, G.-J. Zhang, Y.-M. Kan, and P.-L. Wang, Mater. Lett. 63, 1422 (2009).

    Article  CAS  Google Scholar 

  60. H.-C. Oh, S.-H. Lee, and S.-C. Choi, Int. J. Refract. Met. Hard Mater. 42, 132 (2014).

    Article  CAS  Google Scholar 

  61. X. Deng, S. Du, H. Zhang, et al., Ceram. Int. 41, 14419 (2015).

    Article  CAS  Google Scholar 

  62. N. T. Kuznetsov, V. G. Sevast’janov, E.P. Simonenko, et al., Patent RU no. 2556599, July 10, 2015.

    Google Scholar 

  63. E. P. Simonenko, A. V. Derbenev, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 62, 863 (2017). doi 10.1134/S0036023617070221

    Article  CAS  Google Scholar 

  64. V. G. Sevastyanov, Y. S. Ezhov, E. P. Simonenko, and N. T. Kuznetsov, Mater. Sci. Forum 457460, 59 (2004). doi 10.4028/www.scientific.net/MSF.457-460.59

    Article  Google Scholar 

  65. R. G. Pavelko, V. G. Sevast’yanov, Yu. S. Ezhov, and N. T. Kuznetsov, Inorg. Mater. 43, 700 (2007). doi 10.1134/S0020168507070059

    Article  CAS  Google Scholar 

  66. W. Wong-Ng, H. F. McMurdie, B. Paretzkin, et al., Powder Diffr. 2, 257 (1987).

    Article  CAS  Google Scholar 

  67. T. Kawamura, Mineral. J. 4, 333 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Simonenko.

Additional information

Original Russian Text © E.P. Simonenko, N.P. Simonenko, E.K. Papynov, E.A. Gridasova, V.G. Sevastyanov, N.T. Kuznetsov, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 1, pp. 3–18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, E.P., Simonenko, N.P., Papynov, E.K. et al. Production of HfB2–SiC (10–65 vol % SiC) Ultra-High-Temperature Ceramics by Hot Pressing of HfB2–(SiO2–C) Composite Powder Synthesized by the Sol–Gel Method. Russ. J. Inorg. Chem. 63, 1–15 (2018). https://doi.org/10.1134/S0036023618010187

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618010187

Navigation