Skip to main content
Log in

Optical Band Gap Energies in Quasi-Metal Carbon Nanotubes

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The structure of carbon nanotubes is described by two positive integers (n1, n2). The π-electron model of the nanotube band structure predicts that when the difference n1n2 is multiple of three, the energy gap between the valence and conduction bands vanishes so that such tubes should exhibit quasi-metal properties. The band structure of 50 chiral and achiral (n1, n2) nanotubes with 4 ≤ n1 ≤ 18 and n2 = n1–3q has been calculated by the linearized augmented cylindrical wave method. Nanotubes have been identified for which the optical band gaps are in the terahertz range (1–40 meV) and which can be used for design of emitters, detectors, multipliers, antennas, transistors, and other nanoelements operating in the high-frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Hamada, S. I. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).

    Article  CAS  Google Scholar 

  2. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 46, 1804 (1992).

    Article  CAS  Google Scholar 

  3. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).

    Article  CAS  Google Scholar 

  4. C. T. White, D. H. Robertson, and J. W. Mintmire, Phys. Rev. B 47, 5485 (1993).

    Article  CAS  Google Scholar 

  5. M. S. Dresselhaus, G. Dresslhaus, and R. Saito, Carbon 3, 883 (1995).

    Article  Google Scholar 

  6. J. W. Mintmire, D. H. Robertson, and C. T. White, J. Phys. Chem. Solids 54, 1835 (1993).

    Article  CAS  Google Scholar 

  7. X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie, Phys. Rev. Lett. 72, 1878 (1994).

    Article  CAS  Google Scholar 

  8. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).

    Article  CAS  Google Scholar 

  9. L. F. Chibotaru, S. A. Bovin, and A. Ceulemans, Phys. Rev. B 66, 161401(R) (2002).

    Article  Google Scholar 

  10. R. R. Hartmann and M. E. Portnoi, IOP Conf. Ser.: Mater. Sci. Eng. 79, 012014 (2015).

    Article  Google Scholar 

  11. M. Ouyang, J. L. Huang, C. L. Cheung, and C. M. Lieber, Science 292 (5517), 702 (2001).

    Article  CAS  Google Scholar 

  12. M. E. Itkis, S. Niyogi, M. E. Meng, et al., Nano Lett. 2, 155 (2002).

    Article  CAS  Google Scholar 

  13. F. Borondocs, K. Kamarás, M. Nikolou, et al., Phys. Rev. B 74, 045431 (2006).

    Article  Google Scholar 

  14. A. Pekker and K. Kamara, Phys. Rev. B 84, 075475 (2011).

    Article  Google Scholar 

  15. T. Kampfrath, K. von Volkmann, C. M. Aguirre, et al., Phys. Rev. B 101, 267403 (2008).

    CAS  Google Scholar 

  16. A. W. Bushmaker, V. V. Deshpande, S. Hsieh, et al., Phys. Rev. Lett. 103, 067401 (2009).

    Article  Google Scholar 

  17. H. H. Mantsch and D. Naumann, J. Mol. Struct. 64, 1 (2010).

    Article  Google Scholar 

  18. A. M. Nemilentsau, G. Y. Slepyan, S. A. Maksimenko, et al., The Handbook of Nanophysics, vol. 4: Nanotubes and Nanowires, Ed. by K. D. Ch. Sattler, 2010, chapter 5, p. 1.

  19. R. R. Hartmann and M. E. Portnoi, AIP Conf. Proc. 1705, 020046 (2016).

    Article  Google Scholar 

  20. M. E. Portnoi, O. V. Kibis, and M. R. Costa, Superlattices Microstruct. 43, 399 (2008).

    Article  CAS  Google Scholar 

  21. R. R. Hartmann, J. Kono, and M. E. Portnoi, Nanotecnology 25, 322001 (2014).

    Article  CAS  Google Scholar 

  22. D. Mann, Y. K. Kato, A. Kinkhabwala, et al., Nat. Nanotechnol. 2, 33 (2007).

    Article  CAS  Google Scholar 

  23. T. Mueller, M. Kinoshita, M. Steiner, et al., Nat. Nanotechnol. 5, 27 (2010).

    Article  CAS  Google Scholar 

  24. X. Wang, L. Zhang, Y. Lu, et al., Appl. Phys. Lett. 91, 261102 (2007).

    Article  Google Scholar 

  25. S.-W. Chang, J. Hazra, M. Amer, et al., ACS Nano 9, 11551 (2015).

    Article  CAS  Google Scholar 

  26. Z. Zhong, N. M. Gabor, J. E. Sharping, et al., Nat. Nanotechnol. 3, 201 (2008).

    Article  CAS  Google Scholar 

  27. X. Cui, M. Freitag, R. Martel, et al., Nano Lett. 3, 783 (2003).

    Article  CAS  Google Scholar 

  28. S. Choi, Efficient antennas for terahertz and optical frequencies. A Dissertation. Univ. of Michigan (2014).

    Google Scholar 

  29. D. F. Santavicca and D. E. Prober, 33rd International Conference on Infrared, Millimeter and Terahertz Waves, IEEE, Pasadena, CA, 2008.

    Google Scholar 

  30. K. Fu, R. Zannoni, S. H. Chan, et al., Appl. Phys. Lett. 92, 033105 (2008).

    Article  Google Scholar 

  31. V. V. Deshpande, B. Chandra, R. Caldwell, et al., Science 323, 206 (2009).

    Article  Google Scholar 

  32. M. R. Amer, A. Bushmaker, and S. B. Cronin, Nano Lett. 12, 4843 (2012).

    Article  CAS  Google Scholar 

  33. H. Lin, J. Lagoute, V. Repain, et al., Nat. Mater. 9, 235 (2010).

    Article  CAS  Google Scholar 

  34. J. C. Slater, Phys. Rev. 51, 851 (1937).

    Google Scholar 

  35. O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

    Article  CAS  Google Scholar 

  36. D. D. Koelling and G. O. Arbman, J. Phys. F: Met. Phys. 5, 2041 (1975).

    Article  CAS  Google Scholar 

  37. P. N. D’yachkov, Int. J. Quantum Chem. 116, 174 (2016).

    Article  Google Scholar 

  38. P. N. D’yachkov and D. V. Makaev, Int. J. Quantum Chem. 116, 316 (2016).

    Article  Google Scholar 

  39. P. N. D’yachkov, D. Z. Kutlubaev, and D. V. Makaev, Phys. Rev. B 82, 035426 (2010).

    Article  Google Scholar 

  40. P. N. D’yachkov and D. V. Makaev, Phys. Rev. B 76, 195411 (2007).

    Article  Google Scholar 

  41. P. N. D’yachkov and D. V. Makaev, Phys. Rev. B 74, 155442 (2006).

    Article  Google Scholar 

  42. P. N. D’yachkov, V. A. Zaluev, S. N. Piskunov, and Y. F. Zhukovskii, RSC Adv. 5, 91751 (2015).

    Article  Google Scholar 

  43. T. Miyake and S. Saito, Phys. Rev. B 72, 073404 (2005).

    Article  Google Scholar 

  44. O. Gülseren and T. Yildirim, Phys. Rev. B 65, 153405 (2002).

    Article  Google Scholar 

  45. V. Zólyomi and J. Kürti, Phys. Rev. B 70, 085403 (2002).

    Article  Google Scholar 

  46. G. Sun, J. Kürti, M. Kertesz, et al., J. Phys. Chem. B 107, 6924 (2003).

    Article  CAS  Google Scholar 

  47. S. Reich, C. Thomsen, and P. Ordejon, Phys. Rev. B 65, 155411 (2002).

    Article  Google Scholar 

  48. M. R. Amer, S.-W. Chang, R. Dhall, et al., Nano Lett. 13, 5129 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. D’yachkov.

Additional information

Original Russian Text © P.N. D’yachkov, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 1, pp. 60–65.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’yachkov, P.N. Optical Band Gap Energies in Quasi-Metal Carbon Nanotubes. Russ. J. Inorg. Chem. 63, 55–60 (2018). https://doi.org/10.1134/S0036023618010072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618010072

Navigation