Phase diagrams in materials science of topological insulators based on metal chalcogenides

Abstract

The literature data on topological insulators (TIs) based on metal chalcogenides, which constitute a new unique class of functional materials, are systematized here in the context of physicochemical analysis and crystal chemistry. An accent is on the phase diagrams of relevant systems and the crystal structures of the main TI types. We show that, for search and design of new phases having TI properties, it will be expedient to revise earlier constructed phase diagrams for some systems, especially BV–Se(Te) and AIV–BV–Te (AIV = Ge, Sn, Pb; BV = Sb, Bi) systems, using new approaches to studies of phase equilibria. There is also a need for systematic studies of complex systems involving binary and ternary TIs.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306, 666 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature 438, 197 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    A. K. Geim, Usp. Fiz. Nauk 181, 1284 (2011).

    Article  Google Scholar 

  4. 4.

    C. L. Kane and J. E. Moore, Phys. World 24, 32 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    J. E. Moore, Nature 464, 194 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    C. L. Kane, Nature 4, 348 (2008).

    CAS  Google Scholar 

  8. 8.

    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    C. Xu and J. E. Moore, Phys. Rev. B 73, 045322 (2006).

    Article  CAS  Google Scholar 

  11. 11.

    J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).

    Article  CAS  Google Scholar 

  12. 12.

    B. A. Bernevig, T. L. Hughes, and S. Zhang, Science 314, 1757 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    M. Konig, S. Wiedmann, C. Brune, et al., Science 318, 766 (2007).

    Article  CAS  Google Scholar 

  14. 14.

    J. C. Y. Teo, L. Fu, and C. L. Kane, Phys. Rev. B 78, 045426–15 (2008).

    Article  CAS  Google Scholar 

  15. 15.

    H. Zhang, C. X. Liu, X. L. Qi, et al., Nature Phys 5, 438 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    D. Hsieh, Y. Xia, D. Qian, et al., Phys. Rev. Lett. 103, 146401 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    H.-J. Noh, H. Koh, S. J. Oh, et al., Europhys. Lett. 81, 57006 (2008).

    Article  CAS  Google Scholar 

  18. 18.

    S. V. Eremeev, Yu. M. Koroteev, and E. V. Chulkov, JETP Lett. 91, 387 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    L. Fu and C. L. Kane, Phys. Rev. B 79, R161408 (2009).

    Article  CAS  Google Scholar 

  20. 20.

    L. Jiang, C. L. Kane, and J. Preskill, Phys. Rev. Lett. 106, 130504 (2011).

    Article  CAS  Google Scholar 

  21. 21.

    D. Pesin and A. H. MacDonald, Nature Mater. 11, 409 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    I. Garate and M. Franz, Phys. Rev. Lett. 104, 146802 (2010).

    Article  CAS  Google Scholar 

  23. 23.

    F. Mahfouzi, N. Nagaosa, and B. K. Nikolic, Phys. Rev. Lett. 109, 166602 (2012).

    Article  CAS  Google Scholar 

  24. 24.

    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 96, 445 (2012).

    Article  CAS  Google Scholar 

  25. 25.

    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 94, 629 (2011).

    Article  CAS  Google Scholar 

  26. 26.

    J. Henk, A. Ernst, S. V. Eremeev, et al., Phys. Rev. Lett. 108, 206801 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    J. Henk, M. Flieger, I. V. Maznichenko, et al., Phys. Rev. Lett. 109, 076801 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    S. V. Eremeev, V. N. Men’shov, V. V. Tugushev, et al., Phys. Rev. B 88, 144430 (2013).

    Article  CAS  Google Scholar 

  29. 29.

    A. Grant, Science News. doi 10.1038/nature13534

  30. 30.

    L. Vicarelli, M. S. Vitiello, D. Coquillat, et al., Nature Mater. 11, 865 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    L. Viti, D. Coquillat, A. Politano, et al., Nano Lett. 16, 80 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    L. Fu and C. L. Kane, Phys. Rev. Lett. 102, 216403 (2009).

    Article  CAS  Google Scholar 

  33. 33.

    L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).

    Article  CAS  Google Scholar 

  34. 34.

    D. B. Kaplan and S. Sun, Phys. Rev. Lett. 108, 181807 (2012).

    Article  CAS  Google Scholar 

  35. 35.

    M. M. Otrokov, S. D. Borisova, V. Chis, et al., JETP Lett. 96, 714 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    M. G. Vergniory, T. V. Men’shikova, S. V. Eremeev, and E. V. Chulkov, JETP Lett. 95, 213 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    S. V. Eremeev, G. Landolt, T. V. Menshchikova, et al., Nature Commun. 3, 635 (2012).

    Article  CAS  Google Scholar 

  38. 38.

    R. Sumalay, H. L. Meyerheim, A. Ernst, et al., Phys. Rev. Lett. 113, 116802 (2014).

    Article  CAS  Google Scholar 

  39. 39.

    I. A. Nechaev, I. Aguilera, V. De Renzi, et al., Phys. Rev. B 91, 245123.

  40. 40.

    S. Kim, M. Ye, K. Kuroda, Y. Yamada, et al., Phys. Rev. Lett. 107, 056803 (2011).

    Article  CAS  Google Scholar 

  41. 41.

    I. A. Nechaev, R. C. Hatch, M. Bianchi, et al., Phys. Rev. B 87, 121111 (2013).

    Article  CAS  Google Scholar 

  42. 42.

    K. Miyamoto, A. Kimura, T. Okuda, et al., Phys. Rev. Lett. 109, 166802 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    S. V. Eremeev, Y. M. Koroteev, and E. V. Chulkov, JETP Lett. 92, 161 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    T. V. Menshchikova, S. V. Eremeev, and Y. M. Koroteev, JETP Lett. 93, 15 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    K. Okamoto, K. Kuroda, H. Miyahara, et al., Phys. Rev. B 86, 195304.

  46. 46.

    T. Okuda, T. Maegawa, M. Ye, et al., Phys. Rev. Lett. 111, 206803 (2013).

    Article  CAS  Google Scholar 

  47. 47.

    D. Niesner, S. Otto, V. Hermann, et al., Phys. Rev. B 89, 081404 (2014).

    Article  CAS  Google Scholar 

  48. 48.

    A. Politano, M. Caputo, S. Nappini, et al., J. Phys. Chem. C 118, 21517 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    S. V. Eremeev, Y. M. Koroteev, and E. V. Chulkov, JETP Lett. 91, 594 (2010).

    CAS  Article  Google Scholar 

  50. 50.

    K. Kuroda, M. Ye, A. Kimura, et al., Phys. Rev. Lett. 105, 146801 (2010).

    CAS  Article  Google Scholar 

  51. 51.

    F. Pielmeier, G. Landolt, B. Slomski, et al., New J. Phys. 17, 023067 (2015).

    Article  CAS  Google Scholar 

  52. 52.

    S. V. Eremeev, G. Bihlmayer, M. Vergniory, et al., Phys. Rev. B 83, 205129 (2011).

    Article  CAS  Google Scholar 

  53. 53.

    M. Papagno, S. Eremeev, J. Fujii, et al., ACS Nano 10, 3518 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    C. Lamuta, A. Cupolillo, A. Politano, et al., Nano Res. 9, 1032 (2016).

    CAS  Article  Google Scholar 

  55. 55.

    C. Lamuta, D. Campi, A. Cupolillo, et al., Scr. Mater. 121, 50 (2016).

    CAS  Article  Google Scholar 

  56. 56.

    C. Lamuta, A. Cupolillo, A. Politano, et al., Phys. Status Solidi B 253, 1082 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    M. Caputo, M. Panighel, S. Lisi, et al., Nano Lett. 16, 3409 (2016).

    CAS  Article  Google Scholar 

  58. 58.

    S. V. Eremeev, I. A. Nechaev, and E. V. Chulkov, JETP Lett. 96, 437 (2012).

    CAS  Article  Google Scholar 

  59. 59.

    X. Xi, Ch. Ma, Z. Liu, et al., Phys. Rev. Lett. 111, 155701 (2013).

    Article  CAS  Google Scholar 

  60. 60.

    K. Ishizaka, M. S. Bahramy, H. Murakawa, et al., Nature Mater. 10, 521 (2011).

    CAS  Article  Google Scholar 

  61. 61.

    G. Landolt, S. V. Eremeev, Y. M. Koroteev, et al., Phys. Rev. Lett. 109, 116403 (2012).

    Article  CAS  Google Scholar 

  62. 62.

    S. V. Eremeev, I. A. Nechaev, Yu. M. Koroteev, et al., Phys. Rev. Lett. 108, 246802 (2012).

    CAS  Article  Google Scholar 

  63. 63.

    A. Bansil, H. Lin, and N. Das, Rev. Mod. Phys. 88, 021004 (2016).

    Article  Google Scholar 

  64. 64.

    V. B. Lazarev, V. I. Shevchenko, and S. F. Marenkin, in Physical Methods of Investigation of Inorganic Materials (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  65. 65.

    Ya. I. Gerasimov, Selected Works. General Topics of Physical Chemistry and Thermodynamics. Thermodynamic Foundations of Materials Science (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  66. 66.

    R. L. Parker, Crystal Growth Mechanisms: Energetics, Kinetics, and Transport, Solid State Physics: Advances in Research and Applications, Ed. by M. Ehrenreich, F. Seitz, and D. Turnbull (Academic Press, New York, 1970; Mir, Moscow, 1974).

    Google Scholar 

  67. 67.

    S. A. Medvedev, Introduction to Semiconductor Technology (Vysshaya Shkola, Moscow, 1970) [in Russian].

    Google Scholar 

  68. 68.

    H. L. Bhat, Introduction to Crystal Growth: Principles and Practice (CRC Press, 2014).

    Google Scholar 

  69. 69.

    A. V. Knot’ko, I. A. Presnyakov, and Yu. D. Tret’yakov, The Chemistry of Solids (Akademiya, Moscow, 2006) [in Russian].

    Google Scholar 

  70. 70.

    C. N. R. Rao and J. Gopalakrishnan, New Directions in Solid State Chemistry, 1st ed. (Cambridge Press, 1990).

    Google Scholar 

  71. 71.

    A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling Infosearch, 184 (1957).

    Google Scholar 

  72. 72.

    N. Kh. Abrikosov, V. F. Bankina, L. V. Poretskaya, et al., Semiconductor Chalcogenides and Their Base Alloys (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  73. 73.

    G. Petzow and G. Effenberg, Ternary Alloys. A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams (ASM, USA, 1992).

    Google Scholar 

  74. 74.

    A. V. Shevelkov, Russ. Chem. Rev. 77, 1 (2008).

    CAS  Article  Google Scholar 

  75. 75.

    D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2006).

    Google Scholar 

  76. 76.

    V. S. Zemskov, L. E. Shelimova, O. G. Karpinskii, et al., Termoelektrichestvo, No. 1, 18 (2010).

    Google Scholar 

  77. 77.

    J. Emsley, The Elements, 3rd ed. (Clarendon, Oxford, 1998).

    Google Scholar 

  78. 78.

    P. W. Bridgman, Proc. Am. Acad. Arts. Sci. 60, 305 (1925).

    Article  Google Scholar 

  79. 79.

    D. C. Stockbarger, Rev. Sci. Instr. 10, 205 (1939).

    CAS  Article  Google Scholar 

  80. 80.

    W. G. Pfann, Trans. Am. Inst. Mining Metallurg. Eng. 194, 747 (1952).

    Google Scholar 

  81. 81.

    J. Czochralski, Z. Phys. Chem. 92, 219 (1918).

    Google Scholar 

  82. 82.

    L. Ainsworth, Proc. Phys. Soc. B 69, 606 (1956).

    Article  Google Scholar 

  83. 83.

    A. Bachran, P. Reinshaus, and W. Seifert, Cryst. Res. Technol. 33 (1), 27 (1998).

    CAS  Article  Google Scholar 

  84. 84.

    P. Dold and K. W. Benz, Progr. Cryst. Growth Charact. Mater. 38, 7 (1999).

    CAS  Article  Google Scholar 

  85. 85.

    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    CAS  Article  Google Scholar 

  86. 86.

    S. Jia, H. Ji, E. Climent-Pascual, et al., Phys. Rev. B 84, 235206 (2011).

    Article  CAS  Google Scholar 

  87. 87.

    K. A. Kokh, V. N. Popov, A. E. Kokh, et al., J. Crystal Growth 303, 253 (2007).

    CAS  Article  Google Scholar 

  88. 88.

    M. Hansen and K. Anderko, Constitution of Binary Alloys, 2nd Ed. (McGraw-Hill, New York, 1958), p. 1305.

    Google Scholar 

  89. 89.

    H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys (ASM Int., Materials Park, OH, 2010).

    Google Scholar 

  90. 90.

    Phase Diagrams of Binary Metal Systems. Handbook, Ed. by R. P. Lyakishev (Mashinostroenie, Moscow, 1996 (Vol. 1), 1997 (Vol. 2) [in Russian].

  91. 91.

    H. Okamoto, J. Phase Equil. 5, 195 (1994).

    Article  Google Scholar 

  92. 92.

    L. E. Shelimova, O. G. Karpinsky, M. A. Kretova, et al., Inorg. Mater. 36, 768 (2000).

    CAS  Article  Google Scholar 

  93. 93.

    B. Predel, Landolt-Börnstein Group, IV: Phys. Chem. B 12, 116 (1992).

    Google Scholar 

  94. 94.

    L. E. Shelimova, O. G. Karpinsky, V. I. Kosyakov, et al., J. Struct. Chem. 41, 81 (2000).

    CAS  Article  Google Scholar 

  95. 95.

    R. F. Brebrick, The Chemistry of Extended Defects in Non-Metallic Solids (North-Holland, Amsterdam/ London, 1970).

    Google Scholar 

  96. 96.

    N. Kh. Abrikosov and M. M. Stasova, Inorg. Mater. 21, 1758 (1985).

    Google Scholar 

  97. 97.

    N. Kh. Abrikosov and L. F. Poretskaya, Inorg. Mater. 1, 503 (1965).

    CAS  Google Scholar 

  98. 98.

    Solid Solutions in Semiconductir Systems: A Handbook, Ed. by V. S. Zemskov (Nauka, Moscow, 1978) [in Russian].

  99. 99.

    V. N. Tomashik and P. Parrot, MSIT: The Landolt-Börnstein Database, New Ser. IV /11C1, p. 242

  100. 100.

    T. Gaillat, M. Carle, D. Perrin, et al., J. Phys. Chem. Solids 53, 227 (1992).

    Article  Google Scholar 

  101. 101.

    L. E. Shelimova, V. N. Tomashik, and V. I. Grytsiv, Phase Diagrams in Materials Science of Semiconductors: Systems Involving Silicon, Germanium, Tin, and Lead Chalcogenides (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  102. 102.

    L. E. Shelimova, V. I. Kosyakov, V. A. Shestakov, et al., Inorg. Mater. 36, 1004 (2000).

    Article  Google Scholar 

  103. 103.

    L. E. Shelimova, O. G. Karpinsky, P. P. Konstantinov, et al., Inorg. Mater. 37, 342 (2001).

    CAS  Article  Google Scholar 

  104. 104.

    L. E. Shelimova, P. P. Konstantinov, O. G. Karpinsky, et al., J. Alloys Compd. 329, 50 (2001).

    CAS  Article  Google Scholar 

  105. 105.

    L. E. Shelimova, V. I. Kosyakov, V. A. Shestakov, et al., Inorg. Mater. 36, 201 (2000).

    Article  Google Scholar 

  106. 106.

    L. E. Shelimova, O. G. Karpinsky, M. A. Kretova, et al., Inorg. Mater. 36, 1108 (2000).

    Article  Google Scholar 

  107. 107.

    K. Adouby, A. A. Toure, G. Kra, et al., C.R. Acad. Sci., Ser. llc, Chim./Chem. 3, 51 (2000).

    CAS  Google Scholar 

  108. 108.

    O. G. Karpinsky, L. E. Shelimova, M. A. Kretova, et al., Inorg. Mater. 39, 240 (2003).

    Article  Google Scholar 

  109. 109.

    L. E. Shelimova, O. G. Karpinsky, P. P. Konstantinov, et al., Inorg. Mater. 40, 451 (2004).

    CAS  Article  Google Scholar 

  110. 110.

    N. Kh. Abrikosov, E. I. Elagina, and M. A. Popova, Inorg. Mater. 1, 1944 (1965).

    Google Scholar 

  111. 111.

    T. Hirai, Y. Takeda, and K. Kurata, J. Less-Common Met. 13, 352 (1967).

    CAS  Article  Google Scholar 

  112. 112.

    L. E. Shelimova, O. G. Karpinsky, T. E. Svechnikova, et al., Inorg. Mater. 40, 1264 (2004).

    CAS  Article  Google Scholar 

  113. 113.

    T. Ikeda, V. A. Ravi, and G. J. Snyder, Acta Metall. 57, 666 (2009).

    CAS  Google Scholar 

  114. 114.

    O. G. Karpinsky, L. E. Shelimova, E. S. Avilov, et al., Inorg. Mater. 38, 17 (2002).

    Article  Google Scholar 

  115. 115.

    N. Frangis, S. Kuypers, C. Manolikas, et al., Solid State Commun. 69, 817 (1989).

    CAS  Article  Google Scholar 

  116. 116.

    M. Francombe, Philos. Mag. 10, 989 (1964).

    CAS  Article  Google Scholar 

  117. 117.

    R. A. Reynolds, J. Electrochem. Soc. 114, 526 (1967).

    CAS  Article  Google Scholar 

  118. 118.

    M. B. Babanly, F. N. Guseinov, and Q. B. Dashdiyeva, Inorg. Mater. 47, 235 (2011).

    CAS  Article  Google Scholar 

  119. 119.

    M. B. Babanly, A. V. Shevelkov, F. N. Guseinov, et al., Inorg. Mater. 47, 712 (2011).

    CAS  Article  Google Scholar 

  120. 120.

    F. N. Guseinov, A. E. Seidzade, Y. A. Yusibov, and M. B. Babanly, Inorg. Mater. 53, 354 (2017).

    CAS  Article  Google Scholar 

  121. 121.

    Z. G. Pinsker, S. A. Semiletov, and E. N. Belova, Dokl. Akad. Nauk SSSR 106, 1003 (1956).

    CAS  Google Scholar 

  122. 122.

    S. A. Semiletov and L. I. Man, Kristallografiya 4, 414 (1959).

    CAS  Google Scholar 

  123. 123.

    A. Gaumann and P. Bohac, J. Less-Common. Met. 31, 314 (1973).

    Article  Google Scholar 

  124. 124.

    I. V. Botgros, K. R. Zbigli, A. V. Stanchu, et al., Inorg. Mater. 11, 1953 (1975).

    CAS  Google Scholar 

  125. 125.

    N. P. Gotko, V. V. Kirilenko, V. V. Churbanov, and R. N. Schelokov, Inorg. Mater. 22, 1438 (1986).

    CAS  Google Scholar 

  126. 126.

    M. B. Babanly, Doctorate Dissertation in Chem. (MGU, Moscow, 1987) [in Russian].

    Google Scholar 

  127. 127.

    M. B. Babanly, Y. I. Dzhafarov, and A. A. Kuliev, Russ. J. Phys. Chem. 61, 2599 (1987).

    CAS  Google Scholar 

  128. 128.

    M. B. Babanly, Y. I. Dzhafarov, and A. A. Kuliev, Russ. J. Inorg. Chem. 43, 779 (1998).

    Google Scholar 

  129. 129.

    I. Mucha, Thermochim. Acta 563, 6 (2013).

    CAS  Article  Google Scholar 

  130. 130.

    Y. I. Dzhafarov, M. B. Babanly, and A. A. Kuliev, Russ. J. Inorg. Chem. 43, 619 (1998).

    Google Scholar 

  131. 131.

    Y. I. Dzhafarov, M. B. Babanly, and A. A. Kuliev, Russ. J. Inorg. Chem. 43, 1278 (1998).

    Google Scholar 

  132. 132.

    K. R. Zbigli and S. D. Raevskii, Inorg. Mater. 20, 211 (1984).

    CAS  Google Scholar 

  133. 133.

    M. B. Babanly, I. S. Zamani, A. Akhmadyar, and A. A. Kuliev, Russ. J. Inorg. Chem. 35, 1285 (1990).

    CAS  Google Scholar 

  134. 134.

    Z. Sztuba, I. Mucha, and W. Gawel, Polish J. Chem. 78, 789 (2004).

    CAS  Google Scholar 

  135. 135.

    M. B. Babanly, B. A. Popovkin, I. S. Zamani, and R. R. Guseynova, Russ. J. Inorg. Chem. 48, 2091 (2003).

    CAS  Google Scholar 

  136. 136.

    I. V. Botgros, K. R. Zbigli, A. V. Stanchu, et al., Inorg. Mater. 13, 1202 (1977).

    CAS  Google Scholar 

  137. 137.

    M. B. Babanly, A. Akhmadyar, and A. A. Kuliev, Russ. J. Phys. Chem. 59, 676 (1985).

    Google Scholar 

  138. 138.

    A. Akhmad’yar, M. B. Babanly, and A. A. Kuliev, Azerb. Khim. Zh., No. 3, 96 (1984).

    Google Scholar 

  139. 139.

    M. B. Babanly, A. Akhmadyar, and A. A. Kuliev, Russ. J. Inorg. Chem. 30, 1051 (1985).

    CAS  Google Scholar 

  140. 140.

    L. G. Berg and A. G. Abdulmanov, Inorg. Mater. 6, 2192 (1970).

    CAS  Google Scholar 

  141. 141.

    A. Pradel, J.-C. Tedenac, G. Brun, and M. Maurin, J. Solid State Chem. 45, 99 (1982).

    CAS  Article  Google Scholar 

  142. 142.

    M. B. Babanly, A. Akhmadyar, and A. A. Kuliev, Russ. J. Inorg. Chem. 30, 2356 (1985).

    CAS  Google Scholar 

  143. 143.

    W. Gawel, E. Zaleska, and J. Terpilowski, J. Therm. Anal. 35, 59 (1989).

    CAS  Article  Google Scholar 

  144. 144.

    Ya. I. Dzhafarov, Doctorate Dissertation in Chem. (Baku, 2015).

    Google Scholar 

  145. 145.

    Ya. I. Dzhafarov, S. Z. Imamalieva, A. K. Babaev, and M. B. Babanly, Azerb. Khim. Zh., No. 4, 75 (2013).

    Google Scholar 

  146. 146.

    M. B. Babanly, Yu. A. Yusibov, and V. T. Abishov, The EMF Method in the Thermodynamics of Compound Semiconductors (BGU, Baku, 1992) [in Russian].

    Google Scholar 

  147. 147.

    M. B. Babanly and Yu. A. Yusibov, Electrochemical Methods in the Thermodynamics of Inorganic Systems (ELM, Baku, 2011) [in Russian].

    Google Scholar 

  148. 148.

    M. B. Babanly, S. M. Veysova, Z. A. Guseinov, and Y. I. Jafarov, Russ. J. Inorg. Chem. 47, 1020 (2002).

    CAS  Google Scholar 

  149. 149.

    S. M. Veisova, Z. A. Guseinov, F. N. Guseinov, et al., Ser. Estestv. Nauk, No. 3, 10 (2004).

    Google Scholar 

  150. 150.

    Y. I. Jafarov, A. M. Mirzoeva, and M. B. Babanly, Russ. J. Inorg.Chem. 53, 2 (2008).

    Article  Google Scholar 

  151. 151.

    Ya. I. Dzhafarov, A. M. Mirzoeva, A. L. Mustafaeva, et al., Khim. Probl, No. 4, 40 (2004).

    Google Scholar 

  152. 152.

    Y. I. Jafarov, A. M. Mirzoeva, and M. B. Babanly, Russ. J. Inorg. Chem. 51, 871 (2006).

    Google Scholar 

  153. 153.

    Y. I. Jafarov, M. B. Babanly, I. R. Amiraslanov, et al., J. Alloys Compd. 551, 512 (2014).

    Google Scholar 

  154. 154.

    Ya. I. Dzhafarov, Usp. Sovrem. Estestv., No. 1, 88 (2013).

    Google Scholar 

  155. 155.

    Ya. I. Dzhafarov, Khim. Probl., No. 3, 445 (2010).

    Google Scholar 

  156. 156.

    Ya. I. Dzhafarov, Azerb. Khim. Zh., No. 4, 192 (2010).

    Google Scholar 

  157. 157.

    Y. I. Jafarov, A. V. Shevelkov, M. B. Babanly, et al., J. Alloys Compd. 555, 184 (2013).

    CAS  Article  Google Scholar 

  158. 158.

    Ya. I. Dzhafarov, Azerb. Khim. Zh., No. 1, 191 (2011).

    Google Scholar 

  159. 159.

    Ya. I. Dzhafarov, Azerb. Khim. Zh., No. 4, 111 (2012).

    Google Scholar 

  160. 160.

    Y. I. Jafarov, N. A. Rzaeva, and M. B. Babanly, Inorg. Mater. 44, 1183 (2008).

    CAS  Article  Google Scholar 

  161. 161.

    Ya. I. Dzhafarov, Vestn. BGU, Ser. Estestv. Nauk, No. 2, 10 (2013).

    Google Scholar 

  162. 162.

    Y. I. Jafarov, Qafqaz Univ.-Phys. 2, 92 (2014).

    Google Scholar 

  163. 163.

    Y. I. Jafarov, S. Z. Imamaliyeva, V. P. Zlomanov, and M. B. Babanly, Inorg. Mater. 50, 551 (2014).

    CAS  Article  Google Scholar 

  164. 164.

    M. B. Babanly, S. M. Veysova, Z. A. Guseynov, and Y. A. Yusibov, Russ. J. Inorg. Chem. 48, 2562 (2003).

    Google Scholar 

  165. 165.

    N. R. Valitova, V. A. Aleshin, B. A. Popovkin, et al., Inorg. Mater. 12, 225 (1976).

    CAS  Google Scholar 

  166. 166.

    S. V. Savilov, V. N. Khrustalev, A. N. Kuznetsov, et al., Russ. Chem. Bull. 54, 87 (2005).

    CAS  Article  Google Scholar 

  167. 167.

    M. B. Babanly, J.-C. Tedenac, Z. S. Aliev, et al., J. Alloys Compd. 481, 349 (2009).

    CAS  Article  Google Scholar 

  168. 168.

    M. B. Babanly, Z. S. Aliyev, S. S. Musaeva, et al., J. Alloys Compd. 505, 450 (2010).

    Article  CAS  Google Scholar 

  169. 169.

    Z. S. Aliev, M. B. Babanly, D. M. Babanly, et al., Int. J. Mater. Res. 103, 290 (2012).

    CAS  Article  Google Scholar 

  170. 170.

    Z. S. Aliev, S. S. Musayeva, F. Y. Jafarli, et al., J. Alloys Compd. 610, 522 (2014).

    CAS  Article  Google Scholar 

  171. 171.

    A. Isaeva, B. Rasche, and M. Ruck, Phys. Stat. Sol. RRL 7, 39 (2013).

    CAS  Article  Google Scholar 

  172. 172.

    P. Tang, B. Yan, W. Cao, et al., Phys. Rev. B 89, 041409 (2014).

    Article  CAS  Google Scholar 

  173. 173.

    V. B. Lototski, E. I. Radevich, and N. P. Gavaleshko, Inorg. Mater. 22, 1916 (1986).

    Google Scholar 

  174. 174.

    P. Cucka and C. S. Barrett, Acta Crystallogr. 15, 865 (1962).

    CAS  Article  Google Scholar 

  175. 175.

    C. S. Barrett, P. Cucka, and K. Haefner, Acta Crystallogr. 16, 451 (1963).

    CAS  Article  Google Scholar 

  176. 176.

    K. Malik, D. Das, D. Mondal, et al., J. Appl. Phys. 112, 083706 (2012).

    Article  CAS  Google Scholar 

  177. 177.

    B. Lenoir, M. Cassart, J. P. Michenaud, et al., J. Phys. Chem. Solids 57, 89 (1996).

    CAS  Article  Google Scholar 

  178. 178.

    A. V. Shevelkov, E. V. Dikarev, R. V. Shpanchenko, et al., J. Solid State Chem. 114, 379 (2005).

    Article  Google Scholar 

  179. 179.

    L. I. Man and S. A. Semiletov, Kristallografia 7, 884 (1962).

    Google Scholar 

  180. 180.

    E. F. Hockings and J. G. White, Acta Crystallogr. 14, 328 (1961).

    CAS  Article  Google Scholar 

  181. 181.

    C. L. Teske and W. Bensch, Acta Crystallogr., Sect. E 62, i163 (2006).

    CAS  Article  Google Scholar 

  182. 182.

    K. Kuroda, M. Ye, E. F. Schwier, et al., Phys. Rev. B 88, 245308 (2013).

    Article  CAS  Google Scholar 

  183. 183.

    Y. Feutelais, B. Legendre, N. Rodier, and V. Agafonov, Mater. Res. Bull. 28, 591 (1993).

    CAS  Article  Google Scholar 

  184. 184.

    V. B. Kuznetsov, K. K. Palkina, and A. A. Reshchikova, Inorg. Mater. 4, 670 (1968).

    CAS  Google Scholar 

  185. 185.

    L. Li, Y. W. Yang, X. H. Huang, et al., Appl. Phys. Lett. 88, 103119 (2006).

    Article  CAS  Google Scholar 

  186. 186.

    S. A. Semiletov, Kristallografiya 1, 403 (1956).

    CAS  Google Scholar 

  187. 187.

    S. A. Semiletov and Z. G. Pinsker, Dokl. Akad. Nauk SSSR 100, 1079 (1955).

    CAS  Google Scholar 

  188. 188.

    M. M. Stasova and O. G. Karpinskii, Zh. Strukt. Khim. 8, 85 (1967).

    CAS  Google Scholar 

  189. 189.

    M. M. Stasova, Zh. Strukt. Khim. 5, 793 (1964).

    CAS  Google Scholar 

  190. 190.

    M. M. Stasova, Inorg. Mater. 4, 21 (1968).

    Google Scholar 

  191. 191.

    M. M. Stasova, Zh. Strukt. Khim. 8, 655 (1967).

    CAS  Google Scholar 

  192. 192.

    R. M. Imamov and S. A. Semiletov, Sov. Phys-Crystallogr. 15, 239 (1970).

    Google Scholar 

  193. 193.

    P. F. P. Poudeu and M. G. Kanatzidis, Chem. Commun., 2672 (2005).

    Google Scholar 

  194. 194.

    E. V. Dikarev, B. A. Popovkin, and A. V. Shevelkov, Z. Anorg. Allg. Chem. 612, 118 (1992).

    CAS  Article  Google Scholar 

  195. 195.

    E. V. Dikarev, B. A. Popovkin, and A. V. Shevelkov, Russ. Chem. Bull., No. 12, 2304 (2001).

    Article  Google Scholar 

  196. 196.

    G. Autes, A. Isaeva, L. Moreschini, et al. Nature Mater. 15, 154 (2016).

    CAS  Article  Google Scholar 

  197. 197.

    G. Brauer and E. Zintl, Z. Phys. Chem. B 37, 323 (1937).

    Google Scholar 

  198. 198.

    Z. K. Liu, B. Zhou, Y. Zhang, et al., Science 343, 864 (2014).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. B. Babanly.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babanly, M.B., Chulkov, E.V., Aliev, Z.S. et al. Phase diagrams in materials science of topological insulators based on metal chalcogenides. Russ. J. Inorg. Chem. 62, 1703–1729 (2017). https://doi.org/10.1134/S0036023617130034

Download citation