Advertisement

Russian Journal of Inorganic Chemistry

, Volume 62, Issue 13, pp 1703–1729 | Cite as

Phase diagrams in materials science of topological insulators based on metal chalcogenides

  • M. B. Babanly
  • E. V. Chulkov
  • Z. S. Aliev
  • A. V. Shevelkov
  • I. R. Amiraslanov
Article

Abstract

The literature data on topological insulators (TIs) based on metal chalcogenides, which constitute a new unique class of functional materials, are systematized here in the context of physicochemical analysis and crystal chemistry. An accent is on the phase diagrams of relevant systems and the crystal structures of the main TI types. We show that, for search and design of new phases having TI properties, it will be expedient to revise earlier constructed phase diagrams for some systems, especially BV–Se(Te) and AIV–BV–Te (AIV = Ge, Sn, Pb; BV = Sb, Bi) systems, using new approaches to studies of phase equilibria. There is also a need for systematic studies of complex systems involving binary and ternary TIs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature 438, 197 (2005).CrossRefGoogle Scholar
  3. 3.
    A. K. Geim, Usp. Fiz. Nauk 181, 1284 (2011).CrossRefGoogle Scholar
  4. 4.
    C. L. Kane and J. E. Moore, Phys. World 24, 32 (2011).CrossRefGoogle Scholar
  5. 5.
    J. E. Moore, Nature 464, 194 (2010).CrossRefGoogle Scholar
  6. 6.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).CrossRefGoogle Scholar
  7. 7.
    C. L. Kane, Nature 4, 348 (2008).Google Scholar
  8. 8.
    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).CrossRefGoogle Scholar
  9. 9.
    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).CrossRefGoogle Scholar
  10. 10.
    C. Xu and J. E. Moore, Phys. Rev. B 73, 045322 (2006).CrossRefGoogle Scholar
  11. 11.
    J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).CrossRefGoogle Scholar
  12. 12.
    B. A. Bernevig, T. L. Hughes, and S. Zhang, Science 314, 1757 (2006).CrossRefGoogle Scholar
  13. 13.
    M. Konig, S. Wiedmann, C. Brune, et al., Science 318, 766 (2007).CrossRefGoogle Scholar
  14. 14.
    J. C. Y. Teo, L. Fu, and C. L. Kane, Phys. Rev. B 78, 045426–15 (2008).CrossRefGoogle Scholar
  15. 15.
    H. Zhang, C. X. Liu, X. L. Qi, et al., Nature Phys 5, 438 (2009).CrossRefGoogle Scholar
  16. 16.
    D. Hsieh, Y. Xia, D. Qian, et al., Phys. Rev. Lett. 103, 146401 (2009).CrossRefGoogle Scholar
  17. 17.
    H.-J. Noh, H. Koh, S. J. Oh, et al., Europhys. Lett. 81, 57006 (2008).CrossRefGoogle Scholar
  18. 18.
    S. V. Eremeev, Yu. M. Koroteev, and E. V. Chulkov, JETP Lett. 91, 387 (2010).CrossRefGoogle Scholar
  19. 19.
    L. Fu and C. L. Kane, Phys. Rev. B 79, R161408 (2009).CrossRefGoogle Scholar
  20. 20.
    L. Jiang, C. L. Kane, and J. Preskill, Phys. Rev. Lett. 106, 130504 (2011).CrossRefGoogle Scholar
  21. 21.
    D. Pesin and A. H. MacDonald, Nature Mater. 11, 409 (2012).CrossRefGoogle Scholar
  22. 22.
    I. Garate and M. Franz, Phys. Rev. Lett. 104, 146802 (2010).CrossRefGoogle Scholar
  23. 23.
    F. Mahfouzi, N. Nagaosa, and B. K. Nikolic, Phys. Rev. Lett. 109, 166602 (2012).CrossRefGoogle Scholar
  24. 24.
    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 96, 445 (2012).CrossRefGoogle Scholar
  25. 25.
    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 94, 629 (2011).CrossRefGoogle Scholar
  26. 26.
    J. Henk, A. Ernst, S. V. Eremeev, et al., Phys. Rev. Lett. 108, 206801 (2012).CrossRefGoogle Scholar
  27. 27.
    J. Henk, M. Flieger, I. V. Maznichenko, et al., Phys. Rev. Lett. 109, 076801 (2012).CrossRefGoogle Scholar
  28. 28.
    S. V. Eremeev, V. N. Men’shov, V. V. Tugushev, et al., Phys. Rev. B 88, 144430 (2013).CrossRefGoogle Scholar
  29. 29.
    A. Grant, Science News. doi 10.1038/nature13534Google Scholar
  30. 30.
    L. Vicarelli, M. S. Vitiello, D. Coquillat, et al., Nature Mater. 11, 865 (2012).CrossRefGoogle Scholar
  31. 31.
    L. Viti, D. Coquillat, A. Politano, et al., Nano Lett. 16, 80 (2016).CrossRefGoogle Scholar
  32. 32.
    L. Fu and C. L. Kane, Phys. Rev. Lett. 102, 216403 (2009).CrossRefGoogle Scholar
  33. 33.
    L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).CrossRefGoogle Scholar
  34. 34.
    D. B. Kaplan and S. Sun, Phys. Rev. Lett. 108, 181807 (2012).CrossRefGoogle Scholar
  35. 35.
    M. M. Otrokov, S. D. Borisova, V. Chis, et al., JETP Lett. 96, 714 (2013).CrossRefGoogle Scholar
  36. 36.
    M. G. Vergniory, T. V. Men’shikova, S. V. Eremeev, and E. V. Chulkov, JETP Lett. 95, 213 (2012).CrossRefGoogle Scholar
  37. 37.
    S. V. Eremeev, G. Landolt, T. V. Menshchikova, et al., Nature Commun. 3, 635 (2012).CrossRefGoogle Scholar
  38. 38.
    R. Sumalay, H. L. Meyerheim, A. Ernst, et al., Phys. Rev. Lett. 113, 116802 (2014).CrossRefGoogle Scholar
  39. 39.
    I. A. Nechaev, I. Aguilera, V. De Renzi, et al., Phys. Rev. B 91, 245123.Google Scholar
  40. 40.
    S. Kim, M. Ye, K. Kuroda, Y. Yamada, et al., Phys. Rev. Lett. 107, 056803 (2011).CrossRefGoogle Scholar
  41. 41.
    I. A. Nechaev, R. C. Hatch, M. Bianchi, et al., Phys. Rev. B 87, 121111 (2013).CrossRefGoogle Scholar
  42. 42.
    K. Miyamoto, A. Kimura, T. Okuda, et al., Phys. Rev. Lett. 109, 166802 (2012).CrossRefGoogle Scholar
  43. 43.
    S. V. Eremeev, Y. M. Koroteev, and E. V. Chulkov, JETP Lett. 92, 161 (2010).CrossRefGoogle Scholar
  44. 44.
    T. V. Menshchikova, S. V. Eremeev, and Y. M. Koroteev, JETP Lett. 93, 15 (2011).CrossRefGoogle Scholar
  45. 45.
    K. Okamoto, K. Kuroda, H. Miyahara, et al., Phys. Rev. B 86, 195304.Google Scholar
  46. 46.
    T. Okuda, T. Maegawa, M. Ye, et al., Phys. Rev. Lett. 111, 206803 (2013).CrossRefGoogle Scholar
  47. 47.
    D. Niesner, S. Otto, V. Hermann, et al., Phys. Rev. B 89, 081404 (2014).CrossRefGoogle Scholar
  48. 48.
    A. Politano, M. Caputo, S. Nappini, et al., J. Phys. Chem. C 118, 21517 (2014).CrossRefGoogle Scholar
  49. 49.
    S. V. Eremeev, Y. M. Koroteev, and E. V. Chulkov, JETP Lett. 91, 594 (2010).CrossRefGoogle Scholar
  50. 50.
    K. Kuroda, M. Ye, A. Kimura, et al., Phys. Rev. Lett. 105, 146801 (2010).CrossRefGoogle Scholar
  51. 51.
    F. Pielmeier, G. Landolt, B. Slomski, et al., New J. Phys. 17, 023067 (2015).CrossRefGoogle Scholar
  52. 52.
    S. V. Eremeev, G. Bihlmayer, M. Vergniory, et al., Phys. Rev. B 83, 205129 (2011).CrossRefGoogle Scholar
  53. 53.
    M. Papagno, S. Eremeev, J. Fujii, et al., ACS Nano 10, 3518 (2016).CrossRefGoogle Scholar
  54. 54.
    C. Lamuta, A. Cupolillo, A. Politano, et al., Nano Res. 9, 1032 (2016).CrossRefGoogle Scholar
  55. 55.
    C. Lamuta, D. Campi, A. Cupolillo, et al., Scr. Mater. 121, 50 (2016).CrossRefGoogle Scholar
  56. 56.
    C. Lamuta, A. Cupolillo, A. Politano, et al., Phys. Status Solidi B 253, 1082 (2016).CrossRefGoogle Scholar
  57. 57.
    M. Caputo, M. Panighel, S. Lisi, et al., Nano Lett. 16, 3409 (2016).CrossRefGoogle Scholar
  58. 58.
    S. V. Eremeev, I. A. Nechaev, and E. V. Chulkov, JETP Lett. 96, 437 (2012).CrossRefGoogle Scholar
  59. 59.
    X. Xi, Ch. Ma, Z. Liu, et al., Phys. Rev. Lett. 111, 155701 (2013).CrossRefGoogle Scholar
  60. 60.
    K. Ishizaka, M. S. Bahramy, H. Murakawa, et al., Nature Mater. 10, 521 (2011).CrossRefGoogle Scholar
  61. 61.
    G. Landolt, S. V. Eremeev, Y. M. Koroteev, et al., Phys. Rev. Lett. 109, 116403 (2012).CrossRefGoogle Scholar
  62. 62.
    S. V. Eremeev, I. A. Nechaev, Yu. M. Koroteev, et al., Phys. Rev. Lett. 108, 246802 (2012).CrossRefGoogle Scholar
  63. 63.
    A. Bansil, H. Lin, and N. Das, Rev. Mod. Phys. 88, 021004 (2016).CrossRefGoogle Scholar
  64. 64.
    V. B. Lazarev, V. I. Shevchenko, and S. F. Marenkin, in Physical Methods of Investigation of Inorganic Materials (Nauka, Moscow, 1981) [in Russian].Google Scholar
  65. 65.
    Ya. I. Gerasimov, Selected Works. General Topics of Physical Chemistry and Thermodynamics. Thermodynamic Foundations of Materials Science (Nauka, Moscow, 1988) [in Russian].Google Scholar
  66. 66.
    R. L. Parker, Crystal Growth Mechanisms: Energetics, Kinetics, and Transport, Solid State Physics: Advances in Research and Applications, Ed. by M. Ehrenreich, F. Seitz, and D. Turnbull (Academic Press, New York, 1970; Mir, Moscow, 1974).Google Scholar
  67. 67.
    S. A. Medvedev, Introduction to Semiconductor Technology (Vysshaya Shkola, Moscow, 1970) [in Russian].Google Scholar
  68. 68.
    H. L. Bhat, Introduction to Crystal Growth: Principles and Practice (CRC Press, 2014).CrossRefGoogle Scholar
  69. 69.
    A. V. Knot’ko, I. A. Presnyakov, and Yu. D. Tret’yakov, The Chemistry of Solids (Akademiya, Moscow, 2006) [in Russian].Google Scholar
  70. 70.
    C. N. R. Rao and J. Gopalakrishnan, New Directions in Solid State Chemistry, 1st ed. (Cambridge Press, 1990).Google Scholar
  71. 71.
    A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling Infosearch, 184 (1957).Google Scholar
  72. 72.
    N. Kh. Abrikosov, V. F. Bankina, L. V. Poretskaya, et al., Semiconductor Chalcogenides and Their Base Alloys (Nauka, Moscow, 1968) [in Russian].Google Scholar
  73. 73.
    G. Petzow and G. Effenberg, Ternary Alloys. A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams (ASM, USA, 1992).Google Scholar
  74. 74.
    A. V. Shevelkov, Russ. Chem. Rev. 77, 1 (2008).CrossRefGoogle Scholar
  75. 75.
    D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2006).Google Scholar
  76. 76.
    V. S. Zemskov, L. E. Shelimova, O. G. Karpinskii, et al., Termoelektrichestvo, No. 1, 18 (2010).Google Scholar
  77. 77.
    J. Emsley, The Elements, 3rd ed. (Clarendon, Oxford, 1998).Google Scholar
  78. 78.
    P. W. Bridgman, Proc. Am. Acad. Arts. Sci. 60, 305 (1925).CrossRefGoogle Scholar
  79. 79.
    D. C. Stockbarger, Rev. Sci. Instr. 10, 205 (1939).CrossRefGoogle Scholar
  80. 80.
    W. G. Pfann, Trans. Am. Inst. Mining Metallurg. Eng. 194, 747 (1952).Google Scholar
  81. 81.
    J. Czochralski, Z. Phys. Chem. 92, 219 (1918).Google Scholar
  82. 82.
    L. Ainsworth, Proc. Phys. Soc. B 69, 606 (1956).CrossRefGoogle Scholar
  83. 83.
    A. Bachran, P. Reinshaus, and W. Seifert, Cryst. Res. Technol. 33 (1), 27 (1998).CrossRefGoogle Scholar
  84. 84.
    P. Dold and K. W. Benz, Progr. Cryst. Growth Charact. Mater. 38, 7 (1999).CrossRefGoogle Scholar
  85. 85.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).CrossRefGoogle Scholar
  86. 86.
    S. Jia, H. Ji, E. Climent-Pascual, et al., Phys. Rev. B 84, 235206 (2011).CrossRefGoogle Scholar
  87. 87.
    K. A. Kokh, V. N. Popov, A. E. Kokh, et al., J. Crystal Growth 303, 253 (2007).CrossRefGoogle Scholar
  88. 88.
    M. Hansen and K. Anderko, Constitution of Binary Alloys, 2nd Ed. (McGraw-Hill, New York, 1958), p. 1305.Google Scholar
  89. 89.
    H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys (ASM Int., Materials Park, OH, 2010).Google Scholar
  90. 90.
    Phase Diagrams of Binary Metal Systems. Handbook, Ed. by R. P. Lyakishev (Mashinostroenie, Moscow, 1996 (Vol. 1), 1997 (Vol. 2) [in Russian].Google Scholar
  91. 91.
    H. Okamoto, J. Phase Equil. 5, 195 (1994).CrossRefGoogle Scholar
  92. 92.
    L. E. Shelimova, O. G. Karpinsky, M. A. Kretova, et al., Inorg. Mater. 36, 768 (2000).CrossRefGoogle Scholar
  93. 93.
    B. Predel, Landolt-Börnstein Group, IV: Phys. Chem. B 12, 116 (1992).Google Scholar
  94. 94.
    L. E. Shelimova, O. G. Karpinsky, V. I. Kosyakov, et al., J. Struct. Chem. 41, 81 (2000).CrossRefGoogle Scholar
  95. 95.
    R. F. Brebrick, The Chemistry of Extended Defects in Non-Metallic Solids (North-Holland, Amsterdam/ London, 1970).Google Scholar
  96. 96.
    N. Kh. Abrikosov and M. M. Stasova, Inorg. Mater. 21, 1758 (1985).Google Scholar
  97. 97.
    N. Kh. Abrikosov and L. F. Poretskaya, Inorg. Mater. 1, 503 (1965).Google Scholar
  98. 98.
    Solid Solutions in Semiconductir Systems: A Handbook, Ed. by V. S. Zemskov (Nauka, Moscow, 1978) [in Russian].Google Scholar
  99. 99.
    V. N. Tomashik and P. Parrot, MSIT: The Landolt-Börnstein Database, New Ser. IV /11C1, p. 242Google Scholar
  100. 100.
    T. Gaillat, M. Carle, D. Perrin, et al., J. Phys. Chem. Solids 53, 227 (1992).CrossRefGoogle Scholar
  101. 101.
    L. E. Shelimova, V. N. Tomashik, and V. I. Grytsiv, Phase Diagrams in Materials Science of Semiconductors: Systems Involving Silicon, Germanium, Tin, and Lead Chalcogenides (Nauka, Moscow, 1991) [in Russian].Google Scholar
  102. 102.
    L. E. Shelimova, V. I. Kosyakov, V. A. Shestakov, et al., Inorg. Mater. 36, 1004 (2000).CrossRefGoogle Scholar
  103. 103.
    L. E. Shelimova, O. G. Karpinsky, P. P. Konstantinov, et al., Inorg. Mater. 37, 342 (2001).CrossRefGoogle Scholar
  104. 104.
    L. E. Shelimova, P. P. Konstantinov, O. G. Karpinsky, et al., J. Alloys Compd. 329, 50 (2001).CrossRefGoogle Scholar
  105. 105.
    L. E. Shelimova, V. I. Kosyakov, V. A. Shestakov, et al., Inorg. Mater. 36, 201 (2000).CrossRefGoogle Scholar
  106. 106.
    L. E. Shelimova, O. G. Karpinsky, M. A. Kretova, et al., Inorg. Mater. 36, 1108 (2000).CrossRefGoogle Scholar
  107. 107.
    K. Adouby, A. A. Toure, G. Kra, et al., C.R. Acad. Sci., Ser. llc, Chim./Chem. 3, 51 (2000).Google Scholar
  108. 108.
    O. G. Karpinsky, L. E. Shelimova, M. A. Kretova, et al., Inorg. Mater. 39, 240 (2003).CrossRefGoogle Scholar
  109. 109.
    L. E. Shelimova, O. G. Karpinsky, P. P. Konstantinov, et al., Inorg. Mater. 40, 451 (2004).CrossRefGoogle Scholar
  110. 110.
    N. Kh. Abrikosov, E. I. Elagina, and M. A. Popova, Inorg. Mater. 1, 1944 (1965).Google Scholar
  111. 111.
    T. Hirai, Y. Takeda, and K. Kurata, J. Less-Common Met. 13, 352 (1967).CrossRefGoogle Scholar
  112. 112.
    L. E. Shelimova, O. G. Karpinsky, T. E. Svechnikova, et al., Inorg. Mater. 40, 1264 (2004).CrossRefGoogle Scholar
  113. 113.
    T. Ikeda, V. A. Ravi, and G. J. Snyder, Acta Metall. 57, 666 (2009).Google Scholar
  114. 114.
    O. G. Karpinsky, L. E. Shelimova, E. S. Avilov, et al., Inorg. Mater. 38, 17 (2002).CrossRefGoogle Scholar
  115. 115.
    N. Frangis, S. Kuypers, C. Manolikas, et al., Solid State Commun. 69, 817 (1989).CrossRefGoogle Scholar
  116. 116.
    M. Francombe, Philos. Mag. 10, 989 (1964).CrossRefGoogle Scholar
  117. 117.
    R. A. Reynolds, J. Electrochem. Soc. 114, 526 (1967).CrossRefGoogle Scholar
  118. 118.
    M. B. Babanly, F. N. Guseinov, and Q. B. Dashdiyeva, Inorg. Mater. 47, 235 (2011).CrossRefGoogle Scholar
  119. 119.
    M. B. Babanly, A. V. Shevelkov, F. N. Guseinov, et al., Inorg. Mater. 47, 712 (2011).CrossRefGoogle Scholar
  120. 120.
    F. N. Guseinov, A. E. Seidzade, Y. A. Yusibov, and M. B. Babanly, Inorg. Mater. 53, 354 (2017).CrossRefGoogle Scholar
  121. 121.
    Z. G. Pinsker, S. A. Semiletov, and E. N. Belova, Dokl. Akad. Nauk SSSR 106, 1003 (1956).Google Scholar
  122. 122.
    S. A. Semiletov and L. I. Man, Kristallografiya 4, 414 (1959).Google Scholar
  123. 123.
    A. Gaumann and P. Bohac, J. Less-Common. Met. 31, 314 (1973).CrossRefGoogle Scholar
  124. 124.
    I. V. Botgros, K. R. Zbigli, A. V. Stanchu, et al., Inorg. Mater. 11, 1953 (1975).Google Scholar
  125. 125.
    N. P. Gotko, V. V. Kirilenko, V. V. Churbanov, and R. N. Schelokov, Inorg. Mater. 22, 1438 (1986).Google Scholar
  126. 126.
    M. B. Babanly, Doctorate Dissertation in Chem. (MGU, Moscow, 1987) [in Russian].Google Scholar
  127. 127.
    M. B. Babanly, Y. I. Dzhafarov, and A. A. Kuliev, Russ. J. Phys. Chem. 61, 2599 (1987).Google Scholar
  128. 128.
    M. B. Babanly, Y. I. Dzhafarov, and A. A. Kuliev, Russ. J. Inorg. Chem. 43, 779 (1998).Google Scholar
  129. 129.
    I. Mucha, Thermochim. Acta 563, 6 (2013).CrossRefGoogle Scholar
  130. 130.
    Y. I. Dzhafarov, M. B. Babanly, and A. A. Kuliev, Russ. J. Inorg. Chem. 43, 619 (1998).Google Scholar
  131. 131.
    Y. I. Dzhafarov, M. B. Babanly, and A. A. Kuliev, Russ. J. Inorg. Chem. 43, 1278 (1998).Google Scholar
  132. 132.
    K. R. Zbigli and S. D. Raevskii, Inorg. Mater. 20, 211 (1984).Google Scholar
  133. 133.
    M. B. Babanly, I. S. Zamani, A. Akhmadyar, and A. A. Kuliev, Russ. J. Inorg. Chem. 35, 1285 (1990).Google Scholar
  134. 134.
    Z. Sztuba, I. Mucha, and W. Gawel, Polish J. Chem. 78, 789 (2004).Google Scholar
  135. 135.
    M. B. Babanly, B. A. Popovkin, I. S. Zamani, and R. R. Guseynova, Russ. J. Inorg. Chem. 48, 2091 (2003).Google Scholar
  136. 136.
    I. V. Botgros, K. R. Zbigli, A. V. Stanchu, et al., Inorg. Mater. 13, 1202 (1977).Google Scholar
  137. 137.
    M. B. Babanly, A. Akhmadyar, and A. A. Kuliev, Russ. J. Phys. Chem. 59, 676 (1985).Google Scholar
  138. 138.
    A. Akhmad’yar, M. B. Babanly, and A. A. Kuliev, Azerb. Khim. Zh., No. 3, 96 (1984).Google Scholar
  139. 139.
    M. B. Babanly, A. Akhmadyar, and A. A. Kuliev, Russ. J. Inorg. Chem. 30, 1051 (1985).Google Scholar
  140. 140.
    L. G. Berg and A. G. Abdulmanov, Inorg. Mater. 6, 2192 (1970).Google Scholar
  141. 141.
    A. Pradel, J.-C. Tedenac, G. Brun, and M. Maurin, J. Solid State Chem. 45, 99 (1982).CrossRefGoogle Scholar
  142. 142.
    M. B. Babanly, A. Akhmadyar, and A. A. Kuliev, Russ. J. Inorg. Chem. 30, 2356 (1985).Google Scholar
  143. 143.
    W. Gawel, E. Zaleska, and J. Terpilowski, J. Therm. Anal. 35, 59 (1989).CrossRefGoogle Scholar
  144. 144.
    Ya. I. Dzhafarov, Doctorate Dissertation in Chem. (Baku, 2015).Google Scholar
  145. 145.
    Ya. I. Dzhafarov, S. Z. Imamalieva, A. K. Babaev, and M. B. Babanly, Azerb. Khim. Zh., No. 4, 75 (2013).Google Scholar
  146. 146.
    M. B. Babanly, Yu. A. Yusibov, and V. T. Abishov, The EMF Method in the Thermodynamics of Compound Semiconductors (BGU, Baku, 1992) [in Russian].Google Scholar
  147. 147.
    M. B. Babanly and Yu. A. Yusibov, Electrochemical Methods in the Thermodynamics of Inorganic Systems (ELM, Baku, 2011) [in Russian].Google Scholar
  148. 148.
    M. B. Babanly, S. M. Veysova, Z. A. Guseinov, and Y. I. Jafarov, Russ. J. Inorg. Chem. 47, 1020 (2002).Google Scholar
  149. 149.
    S. M. Veisova, Z. A. Guseinov, F. N. Guseinov, et al., Ser. Estestv. Nauk, No. 3, 10 (2004).Google Scholar
  150. 150.
    Y. I. Jafarov, A. M. Mirzoeva, and M. B. Babanly, Russ. J. Inorg.Chem. 53, 2 (2008).CrossRefGoogle Scholar
  151. 151.
    Ya. I. Dzhafarov, A. M. Mirzoeva, A. L. Mustafaeva, et al., Khim. Probl, No. 4, 40 (2004).Google Scholar
  152. 152.
    Y. I. Jafarov, A. M. Mirzoeva, and M. B. Babanly, Russ. J. Inorg. Chem. 51, 871 (2006).Google Scholar
  153. 153.
    Y. I. Jafarov, M. B. Babanly, I. R. Amiraslanov, et al., J. Alloys Compd. 551, 512 (2014).Google Scholar
  154. 154.
    Ya. I. Dzhafarov, Usp. Sovrem. Estestv., No. 1, 88 (2013).Google Scholar
  155. 155.
    Ya. I. Dzhafarov, Khim. Probl., No. 3, 445 (2010).Google Scholar
  156. 156.
    Ya. I. Dzhafarov, Azerb. Khim. Zh., No. 4, 192 (2010).Google Scholar
  157. 157.
    Y. I. Jafarov, A. V. Shevelkov, M. B. Babanly, et al., J. Alloys Compd. 555, 184 (2013).CrossRefGoogle Scholar
  158. 158.
    Ya. I. Dzhafarov, Azerb. Khim. Zh., No. 1, 191 (2011).Google Scholar
  159. 159.
    Ya. I. Dzhafarov, Azerb. Khim. Zh., No. 4, 111 (2012).Google Scholar
  160. 160.
    Y. I. Jafarov, N. A. Rzaeva, and M. B. Babanly, Inorg. Mater. 44, 1183 (2008).CrossRefGoogle Scholar
  161. 161.
    Ya. I. Dzhafarov, Vestn. BGU, Ser. Estestv. Nauk, No. 2, 10 (2013).Google Scholar
  162. 162.
    Y. I. Jafarov, Qafqaz Univ.-Phys. 2, 92 (2014).Google Scholar
  163. 163.
    Y. I. Jafarov, S. Z. Imamaliyeva, V. P. Zlomanov, and M. B. Babanly, Inorg. Mater. 50, 551 (2014).CrossRefGoogle Scholar
  164. 164.
    M. B. Babanly, S. M. Veysova, Z. A. Guseynov, and Y. A. Yusibov, Russ. J. Inorg. Chem. 48, 2562 (2003).Google Scholar
  165. 165.
    N. R. Valitova, V. A. Aleshin, B. A. Popovkin, et al., Inorg. Mater. 12, 225 (1976).Google Scholar
  166. 166.
    S. V. Savilov, V. N. Khrustalev, A. N. Kuznetsov, et al., Russ. Chem. Bull. 54, 87 (2005).CrossRefGoogle Scholar
  167. 167.
    M. B. Babanly, J.-C. Tedenac, Z. S. Aliev, et al., J. Alloys Compd. 481, 349 (2009).CrossRefGoogle Scholar
  168. 168.
    M. B. Babanly, Z. S. Aliyev, S. S. Musaeva, et al., J. Alloys Compd. 505, 450 (2010).CrossRefGoogle Scholar
  169. 169.
    Z. S. Aliev, M. B. Babanly, D. M. Babanly, et al., Int. J. Mater. Res. 103, 290 (2012).CrossRefGoogle Scholar
  170. 170.
    Z. S. Aliev, S. S. Musayeva, F. Y. Jafarli, et al., J. Alloys Compd. 610, 522 (2014).CrossRefGoogle Scholar
  171. 171.
    A. Isaeva, B. Rasche, and M. Ruck, Phys. Stat. Sol. RRL 7, 39 (2013).CrossRefGoogle Scholar
  172. 172.
    P. Tang, B. Yan, W. Cao, et al., Phys. Rev. B 89, 041409 (2014).CrossRefGoogle Scholar
  173. 173.
    V. B. Lototski, E. I. Radevich, and N. P. Gavaleshko, Inorg. Mater. 22, 1916 (1986).Google Scholar
  174. 174.
    P. Cucka and C. S. Barrett, Acta Crystallogr. 15, 865 (1962).CrossRefGoogle Scholar
  175. 175.
    C. S. Barrett, P. Cucka, and K. Haefner, Acta Crystallogr. 16, 451 (1963).CrossRefGoogle Scholar
  176. 176.
    K. Malik, D. Das, D. Mondal, et al., J. Appl. Phys. 112, 083706 (2012).CrossRefGoogle Scholar
  177. 177.
    B. Lenoir, M. Cassart, J. P. Michenaud, et al., J. Phys. Chem. Solids 57, 89 (1996).CrossRefGoogle Scholar
  178. 178.
    A. V. Shevelkov, E. V. Dikarev, R. V. Shpanchenko, et al., J. Solid State Chem. 114, 379 (2005).CrossRefGoogle Scholar
  179. 179.
    L. I. Man and S. A. Semiletov, Kristallografia 7, 884 (1962).Google Scholar
  180. 180.
    E. F. Hockings and J. G. White, Acta Crystallogr. 14, 328 (1961).CrossRefGoogle Scholar
  181. 181.
    C. L. Teske and W. Bensch, Acta Crystallogr., Sect. E 62, i163 (2006).CrossRefGoogle Scholar
  182. 182.
    K. Kuroda, M. Ye, E. F. Schwier, et al., Phys. Rev. B 88, 245308 (2013).CrossRefGoogle Scholar
  183. 183.
    Y. Feutelais, B. Legendre, N. Rodier, and V. Agafonov, Mater. Res. Bull. 28, 591 (1993).CrossRefGoogle Scholar
  184. 184.
    V. B. Kuznetsov, K. K. Palkina, and A. A. Reshchikova, Inorg. Mater. 4, 670 (1968).Google Scholar
  185. 185.
    L. Li, Y. W. Yang, X. H. Huang, et al., Appl. Phys. Lett. 88, 103119 (2006).CrossRefGoogle Scholar
  186. 186.
    S. A. Semiletov, Kristallografiya 1, 403 (1956).Google Scholar
  187. 187.
    S. A. Semiletov and Z. G. Pinsker, Dokl. Akad. Nauk SSSR 100, 1079 (1955).Google Scholar
  188. 188.
    M. M. Stasova and O. G. Karpinskii, Zh. Strukt. Khim. 8, 85 (1967).Google Scholar
  189. 189.
    M. M. Stasova, Zh. Strukt. Khim. 5, 793 (1964).Google Scholar
  190. 190.
    M. M. Stasova, Inorg. Mater. 4, 21 (1968).Google Scholar
  191. 191.
    M. M. Stasova, Zh. Strukt. Khim. 8, 655 (1967).Google Scholar
  192. 192.
    R. M. Imamov and S. A. Semiletov, Sov. Phys-Crystallogr. 15, 239 (1970).Google Scholar
  193. 193.
    P. F. P. Poudeu and M. G. Kanatzidis, Chem. Commun., 2672 (2005).Google Scholar
  194. 194.
    E. V. Dikarev, B. A. Popovkin, and A. V. Shevelkov, Z. Anorg. Allg. Chem. 612, 118 (1992).CrossRefGoogle Scholar
  195. 195.
    E. V. Dikarev, B. A. Popovkin, and A. V. Shevelkov, Russ. Chem. Bull., No. 12, 2304 (2001).CrossRefGoogle Scholar
  196. 196.
    G. Autes, A. Isaeva, L. Moreschini, et al. Nature Mater. 15, 154 (2016).CrossRefGoogle Scholar
  197. 197.
    G. Brauer and E. Zintl, Z. Phys. Chem. B 37, 323 (1937).Google Scholar
  198. 198.
    Z. K. Liu, B. Zhou, Y. Zhang, et al., Science 343, 864 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. B. Babanly
    • 1
  • E. V. Chulkov
    • 2
    • 3
    • 4
  • Z. S. Aliev
    • 5
  • A. V. Shevelkov
    • 6
  • I. R. Amiraslanov
    • 7
  1. 1.Institute of Catalysis and Inorganic ChemistryNational Academy of Sciences of AzerbaijanBakuAzerbaijan
  2. 2.Departamento de Física de Materiales UPV/EHUCentro de Física de Materiales CFM−MPC, Centro Mixto CSIC−UPV/EHUSan Sebastian/Donostia, Basque CountrySpain
  3. 3.National Research Tomsk UniversityTomskRussia
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia
  5. 5.Azerbaijan State Oil and Industry UniversityBakuAzerbaijan
  6. 6.Moscow State UniversityMoscowRussia
  7. 7.Institute of PhysicsNational Academy of Sciences of AzerbaijanBakuAzerbaijan

Personalised recommendations