A composite based on sodium germanate and reduced graphene oxide: Synthesis from peroxogermanate and application as anode material for lithium ion batteries

Abstract

A composite based on sodium germanate and reduced graphene oxide was obtained for the first time by precipitating the initial peroxogermanate on a graphene oxide followed by heat treatment in vacuum. According to powder X-ray diffraction, sodium germanate crystallizes during the heat treatment in vacuum at 500°C. Scanning transmission electron microscopy examination showed that sodium peroxogermanate nanoparticles form a thin film on the surface of graphene oxide flakes. The electrochemical characteristics of composites obtained with different heat treatment conditions were studied as the anodes of lithium ion batteries.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. W. Kim, D. H. Seo, X. H. Ma, et al., Adv. Energy Mater. 2, 710 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    B. Scrosati, J. Hassoun, and Y. K. Sun, Energy Environ. Sci. 4, 3287 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    K. H. Seng, M. H. Park, Z. P. Guo, et al., Nano Lett. 13, 1230 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    J. Hwang, C. Jo, M. G. Kim, et al., ACS Nano 9, 5299 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Zhao, X. F. Li, B. Yan, et al., J. Power Sources 274, 869 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    M. M. Atabaki and R. Kovacevic, Electron. Mater. Lett. 9, 133 (2013).

    Article  Google Scholar 

  7. 7.

    S. P. Wu, R. Xu, M. J. Lu, et al., Adv. Energy Mater. 5, 1500400 (2015).

    Article  Google Scholar 

  8. 8.

    Y. F. Deng, C. C. Fang, and G. H. Chen, J. Power Sources 304, 81 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    M. Srivastava, J. Singh, T. Kuila, et al., Nanoscale 7, 4820 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    G. Cui, L. Gu, L. Zhi, et al., Adv. Mater. 20, 3079 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    C. K. Chan, H. L. Peng, G. Liu, et al., Nat. Nanotechnol. 3, 31 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    E. G. Ippolitov, T. A. Tripol’skaya, P. V. Prikhodchenko, and D. A. Pankratov, Russ. J. Inorg. Chem. 46, 851 (2001).

    Google Scholar 

  13. 13.

    D. A. Pankratov, P. V. Prikhodchenko, Yu. D. Perfil’ev, and E. G. Ippolitov, Izv. Akad. Nauk, Ser. Fiz. 65, 1030 (2001).

    Google Scholar 

  14. 14.

    P. V. Prikhodchenko, V. I. Privalov, T. A. Tripol’skaya, and E. G. Ippolitov, Russ. J. Inorg. Chem 46, 1881 (2001).

    Google Scholar 

  15. 15.

    P. V. Prikhodchenko, V. I. Privalov, T. A. Tripol’skaya, and E. G. Ippolitov, Dokl. Chem. 381, 327 (2001).

    Article  Google Scholar 

  16. 16.

    A. V. Churakov, P. V. Prikhodchenko, E. G. Ippolitov, and M. Yu. Antipin, Russ. J. Inorg. Chem. 47, 68 (2002).

    Google Scholar 

  17. 17.

    P. V. Prikhodchenko, A. V. Churakov, B. N. Novgorodov, et al., Russ. J. Inorg. Chem. 48, 16 (2003).

    Google Scholar 

  18. 18.

    N. A. Chumaevskii, P. V. Prikhodchenko, N. A. Minaeva, and E. G. Ippolitov, Russ. J. Inorg. Chem. 48, 1538 (2003).

    Google Scholar 

  19. 19.

    P. V. Prikhodchenko, E. G. Ippolitov, E. A. Ustinova, and M. A. Fedotov, Russ. J. Inorg. Chem. 49, 1562 (2004).

    Google Scholar 

  20. 20.

    E. A. Legurova, S. Sladkevich, O. Lev, et al., Russ. J. Inorg. Chem. 54, 824 (2009).

    Article  Google Scholar 

  21. 21.

    S. Sladkevich, V. Gutkin, O. Lev, et al., J. Sol-Gel Sci. Technol. 50, 229 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    A. V. Churakov, S. Sladkevich, O. Lev, et al., Inorg. Chem. 49, 4762 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    S. Sladkevich, A. A. Mikhaylov, P. V. Prikhodchenko, et al., Inorg. Chem. 49, 9110 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    S. Sladkevich, J. Gun, P. V. Prikhodchenko, et al., Carbon 50, 5463 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    S. Sladkevich, J. Gun, P. V. Prikhodchenko, et al., Nanotecnology 23, 485601 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    P. V. Prikhodchenko, J. Gun, S. Sladkevich, et al., Chem. Mater. 24, 4750 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    D. Y. W. Yu, S. K. Batabyal, J. Gun, et al., Main Group Met. Chem. 38, 43 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    A. A. Mikhaylov, A. G. Medvedev, C. W. Mason, et al., J. Mater. Chem. A 3, 20681 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    A. G. Medvedev, A. A. Mikhaylov, D. A. Grishanov, et al., ACS Appl. Mater. Interfaces 9, 9152 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    D. Y. W. Yu, P. V. Prikhodchenko, C. W. Mason, et al., Nat. Commun. 4, 2922 (2013).

    Google Scholar 

  31. 31.

    P. V. Prikhodchenko, D. Y. W. Yu, S. K. Batabyal, et al., J. Mater. Chem. A 2, 8431 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    V. Lakshmi, Y. Chen, A. A. Mikhaylov, et al., Chem. Commun. 53, 8272 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    W. C. Schumb, C. N. Satterfield, and R. P. Wentworth, Hydrogen Peroxide (Reinhold Publishing, New York, V. 53, 8272 (1955).

    Google Scholar 

  34. 34.

    A. A. Mikhaylov, A. G. Medvedev, T. A. Tripol’skaya, et al., Russ. J. Inorg. Chem. 61, 1430 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    A. A. Mikhaylov, A. G. Medvedev, T. A. Tripol’skaya, et al., Russ. J. Inorg. Chem. 61, 1578 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    A. G. Medvedev, A. A. Mikhaylov, A. V. Churakov, et al., Inorg. Chem. 54, 8058 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    I. Yu. Chernyshov, M. V. Vener, P. V. Prikhodchenko, et al., Cryst. Growth Des. 17, 214 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    M. V. Vener, A. G. Medvedev, A. V. Churakov, et al., J. Phys. Chem. A 115, 13657 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    P. V. Prikhodchenko, A. G. Medvedev, T. A. Tripol’skaya, et al., CrystEngComm 13, 2399 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    A. G. Medvedev, A. V. Shishkina, P. V. Prikhodchenko, et al., RSC Adv. 5, 29601 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    A. V. Churakov, P. V. Prikhodchenko, J. A. K. Howard, et al., Chem. Commun. 28, 4224 (2009).

    Article  Google Scholar 

  42. 42.

    Y. Wolanov, A. Shurki, P. V. Prikhodchenko, et al., Dalton Trans. 43, 16614 (2014).

    CAS  Article  Google Scholar 

  43. 43.

    D. R. Dreyer, S. Park, C. W. Bielawski, et al., Chem. Soc. Rev. 39, 228 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    S. Abdolhosseinzadeh, H. Asgharzadeh, and H. S. Kim, Sci. Rep. 5, 10160 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    Md. M. Rahman, I. Sultana, T. Yang, et al., Angew. Chem. 55, 16059 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    C. H. Kim, Y. S. Jung, K. T. Lee, et al., Electrochim. Acta 54, 4371 (2009).

    CAS  Article  Google Scholar 

  47. 47.

    D. Lv, M. L. Gordin, R. Yi, et al., Adv. Funct. Mater. 24, 1059 (2014).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. V. Prikhodchenko.

Additional information

Original Russian Text © A.A. Mikhaylov, A.G. Medvedev, D.A. Grishanov, T.A. Tripol’skaya, E.A. Mel’nik, P.V. Prikhodchenko, O. Lev, 2017, published in Zhurnal Neorganicheskoi Khimii, 2017, Vol. 62, No. 12, pp. 1620–1628.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mikhaylov, A.A., Medvedev, A.G., Grishanov, D.A. et al. A composite based on sodium germanate and reduced graphene oxide: Synthesis from peroxogermanate and application as anode material for lithium ion batteries. Russ. J. Inorg. Chem. 62, 1624–1631 (2017). https://doi.org/10.1134/S0036023617120142

Download citation