Advertisement

Russian Journal of Inorganic Chemistry

, Volume 62, Issue 12, pp 1624–1631 | Cite as

A composite based on sodium germanate and reduced graphene oxide: Synthesis from peroxogermanate and application as anode material for lithium ion batteries

  • A. A. Mikhaylov
  • A. G. Medvedev
  • D. A. Grishanov
  • T. A. Tripol’skaya
  • E. A. Mel’nik
  • P. V. PrikhodchenkoEmail author
  • O. Lev
Physical Methods of Investigation

Abstract

A composite based on sodium germanate and reduced graphene oxide was obtained for the first time by precipitating the initial peroxogermanate on a graphene oxide followed by heat treatment in vacuum. According to powder X-ray diffraction, sodium germanate crystallizes during the heat treatment in vacuum at 500°C. Scanning transmission electron microscopy examination showed that sodium peroxogermanate nanoparticles form a thin film on the surface of graphene oxide flakes. The electrochemical characteristics of composites obtained with different heat treatment conditions were studied as the anodes of lithium ion batteries.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. W. Kim, D. H. Seo, X. H. Ma, et al., Adv. Energy Mater. 2, 710 (2012).CrossRefGoogle Scholar
  2. 2.
    B. Scrosati, J. Hassoun, and Y. K. Sun, Energy Environ. Sci. 4, 3287 (2011).CrossRefGoogle Scholar
  3. 3.
    K. H. Seng, M. H. Park, Z. P. Guo, et al., Nano Lett. 13, 1230 (2013).CrossRefGoogle Scholar
  4. 4.
    J. Hwang, C. Jo, M. G. Kim, et al., ACS Nano 9, 5299 (2015).CrossRefGoogle Scholar
  5. 5.
    Y. Zhao, X. F. Li, B. Yan, et al., J. Power Sources 274, 869 (2015).CrossRefGoogle Scholar
  6. 6.
    M. M. Atabaki and R. Kovacevic, Electron. Mater. Lett. 9, 133 (2013).CrossRefGoogle Scholar
  7. 7.
    S. P. Wu, R. Xu, M. J. Lu, et al., Adv. Energy Mater. 5, 1500400 (2015).CrossRefGoogle Scholar
  8. 8.
    Y. F. Deng, C. C. Fang, and G. H. Chen, J. Power Sources 304, 81 (2016).CrossRefGoogle Scholar
  9. 9.
    M. Srivastava, J. Singh, T. Kuila, et al., Nanoscale 7, 4820 (2015).CrossRefGoogle Scholar
  10. 10.
    G. Cui, L. Gu, L. Zhi, et al., Adv. Mater. 20, 3079 (2008).CrossRefGoogle Scholar
  11. 11.
    C. K. Chan, H. L. Peng, G. Liu, et al., Nat. Nanotechnol. 3, 31 (2008).CrossRefGoogle Scholar
  12. 12.
    E. G. Ippolitov, T. A. Tripol’skaya, P. V. Prikhodchenko, and D. A. Pankratov, Russ. J. Inorg. Chem. 46, 851 (2001).Google Scholar
  13. 13.
    D. A. Pankratov, P. V. Prikhodchenko, Yu. D. Perfil’ev, and E. G. Ippolitov, Izv. Akad. Nauk, Ser. Fiz. 65, 1030 (2001).Google Scholar
  14. 14.
    P. V. Prikhodchenko, V. I. Privalov, T. A. Tripol’skaya, and E. G. Ippolitov, Russ. J. Inorg. Chem 46, 1881 (2001).Google Scholar
  15. 15.
    P. V. Prikhodchenko, V. I. Privalov, T. A. Tripol’skaya, and E. G. Ippolitov, Dokl. Chem. 381, 327 (2001).CrossRefGoogle Scholar
  16. 16.
    A. V. Churakov, P. V. Prikhodchenko, E. G. Ippolitov, and M. Yu. Antipin, Russ. J. Inorg. Chem. 47, 68 (2002).Google Scholar
  17. 17.
    P. V. Prikhodchenko, A. V. Churakov, B. N. Novgorodov, et al., Russ. J. Inorg. Chem. 48, 16 (2003).Google Scholar
  18. 18.
    N. A. Chumaevskii, P. V. Prikhodchenko, N. A. Minaeva, and E. G. Ippolitov, Russ. J. Inorg. Chem. 48, 1538 (2003).Google Scholar
  19. 19.
    P. V. Prikhodchenko, E. G. Ippolitov, E. A. Ustinova, and M. A. Fedotov, Russ. J. Inorg. Chem. 49, 1562 (2004).Google Scholar
  20. 20.
    E. A. Legurova, S. Sladkevich, O. Lev, et al., Russ. J. Inorg. Chem. 54, 824 (2009).CrossRefGoogle Scholar
  21. 21.
    S. Sladkevich, V. Gutkin, O. Lev, et al., J. Sol-Gel Sci. Technol. 50, 229 (2009).CrossRefGoogle Scholar
  22. 22.
    A. V. Churakov, S. Sladkevich, O. Lev, et al., Inorg. Chem. 49, 4762 (2010).CrossRefGoogle Scholar
  23. 23.
    S. Sladkevich, A. A. Mikhaylov, P. V. Prikhodchenko, et al., Inorg. Chem. 49, 9110 (2010).CrossRefGoogle Scholar
  24. 24.
    S. Sladkevich, J. Gun, P. V. Prikhodchenko, et al., Carbon 50, 5463 (2012).CrossRefGoogle Scholar
  25. 25.
    S. Sladkevich, J. Gun, P. V. Prikhodchenko, et al., Nanotecnology 23, 485601 (2012).CrossRefGoogle Scholar
  26. 26.
    P. V. Prikhodchenko, J. Gun, S. Sladkevich, et al., Chem. Mater. 24, 4750 (2012).CrossRefGoogle Scholar
  27. 27.
    D. Y. W. Yu, S. K. Batabyal, J. Gun, et al., Main Group Met. Chem. 38, 43 (2015).CrossRefGoogle Scholar
  28. 28.
    A. A. Mikhaylov, A. G. Medvedev, C. W. Mason, et al., J. Mater. Chem. A 3, 20681 (2015).CrossRefGoogle Scholar
  29. 29.
    A. G. Medvedev, A. A. Mikhaylov, D. A. Grishanov, et al., ACS Appl. Mater. Interfaces 9, 9152 (2017).CrossRefGoogle Scholar
  30. 30.
    D. Y. W. Yu, P. V. Prikhodchenko, C. W. Mason, et al., Nat. Commun. 4, 2922 (2013).Google Scholar
  31. 31.
    P. V. Prikhodchenko, D. Y. W. Yu, S. K. Batabyal, et al., J. Mater. Chem. A 2, 8431 (2014).CrossRefGoogle Scholar
  32. 32.
    V. Lakshmi, Y. Chen, A. A. Mikhaylov, et al., Chem. Commun. 53, 8272 (2017).CrossRefGoogle Scholar
  33. 33.
    W. C. Schumb, C. N. Satterfield, and R. P. Wentworth, Hydrogen Peroxide (Reinhold Publishing, New York, V. 53, 8272 (1955).Google Scholar
  34. 34.
    A. A. Mikhaylov, A. G. Medvedev, T. A. Tripol’skaya, et al., Russ. J. Inorg. Chem. 61, 1430 (2016).CrossRefGoogle Scholar
  35. 35.
    A. A. Mikhaylov, A. G. Medvedev, T. A. Tripol’skaya, et al., Russ. J. Inorg. Chem. 61, 1578 (2016).CrossRefGoogle Scholar
  36. 36.
    A. G. Medvedev, A. A. Mikhaylov, A. V. Churakov, et al., Inorg. Chem. 54, 8058 (2015).CrossRefGoogle Scholar
  37. 37.
    I. Yu. Chernyshov, M. V. Vener, P. V. Prikhodchenko, et al., Cryst. Growth Des. 17, 214 (2017).CrossRefGoogle Scholar
  38. 38.
    M. V. Vener, A. G. Medvedev, A. V. Churakov, et al., J. Phys. Chem. A 115, 13657 (2011).CrossRefGoogle Scholar
  39. 39.
    P. V. Prikhodchenko, A. G. Medvedev, T. A. Tripol’skaya, et al., CrystEngComm 13, 2399 (2011).CrossRefGoogle Scholar
  40. 40.
    A. G. Medvedev, A. V. Shishkina, P. V. Prikhodchenko, et al., RSC Adv. 5, 29601 (2015).CrossRefGoogle Scholar
  41. 41.
    A. V. Churakov, P. V. Prikhodchenko, J. A. K. Howard, et al., Chem. Commun. 28, 4224 (2009).CrossRefGoogle Scholar
  42. 42.
    Y. Wolanov, A. Shurki, P. V. Prikhodchenko, et al., Dalton Trans. 43, 16614 (2014).CrossRefGoogle Scholar
  43. 43.
    D. R. Dreyer, S. Park, C. W. Bielawski, et al., Chem. Soc. Rev. 39, 228 (2010).CrossRefGoogle Scholar
  44. 44.
    S. Abdolhosseinzadeh, H. Asgharzadeh, and H. S. Kim, Sci. Rep. 5, 10160 (2015).CrossRefGoogle Scholar
  45. 45.
    Md. M. Rahman, I. Sultana, T. Yang, et al., Angew. Chem. 55, 16059 (2016).CrossRefGoogle Scholar
  46. 46.
    C. H. Kim, Y. S. Jung, K. T. Lee, et al., Electrochim. Acta 54, 4371 (2009).CrossRefGoogle Scholar
  47. 47.
    D. Lv, M. L. Gordin, R. Yi, et al., Adv. Funct. Mater. 24, 1059 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Mikhaylov
    • 1
  • A. G. Medvedev
    • 1
  • D. A. Grishanov
    • 1
  • T. A. Tripol’skaya
    • 1
  • E. A. Mel’nik
    • 1
  • P. V. Prikhodchenko
    • 1
    Email author
  • O. Lev
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Casali Institute of Applied ChemistryHebrew University of JerusalemGivat Ram, JerusalemIsrael

Personalised recommendations