Skip to main content
Log in

Coordination polymers of silver(I) with ditopic cross-conjugated dienone

  • Coordination Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The reaction of the silver salts AgX (a: X = BF4-, b: X = ClO4-, c: X = OTf) with α,α'-di(3/4-pyridylmethylene)cycloalkanones (L1–L3) and piperidones (L4–L7) results in the formation of coordination products of general composition [AgX(Ln)(solvent)] and [AgX(Ln)] (Ln = L1–L7). All complexes were characterized by elemental analysis and IR-spectroscopy. The structures of [Ag(ClO4)(L1)(MeC≡N)] (1b · MeC≡N) and [Ag(ClO4)(L1)] (1b) in the solid state are reported. In both structures {Ag(L1)}+ building units are linked to each other via Ag–Npyridine primary bonds resulting in the formation of infinite chains. In both structures the ligands L1 are fixed in transoid conformations, thus forming zig-zag polar chains. The structure of 1b · MeC≡N consists of pairs of tightly and loosely stacked chains. The tightly packed chains are weakly coupled by perchlorate anions acting as μ-bridges in between Ag(I) centers as well as by π–π-stacking interactions of unsaturated fragments of the respective ligands. In contrast, polar 2D layers composed of {Ag(L1)} m m+ chains, which interdigitate via multiple weak interactions by Ag–O contacts, are found in the solid structure of 1b. The dissolution of coordination products in coordinating solvents like MeCN or DMSO leads to the decomposition of complexes due to formation of silver-solvent coordination compounds. The coordination products 15 are stable in solid state against exposure to the ambient light, whereas solutions of the compounds, especially in DMSO-d6, appeared to be photochemically labile. As revealed by NMR spectroscopic studies, the organic components undergo trans-cis isomerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metal-Organic Frameworks. Applications from Catalysis to Gas Storage, Ed. by D. Farrusseng (Wiley-VCH, Weinheim, 2011).

  2. Metal-organic frameworks. Design and Application, Ed. by L. R. Macgillivray (Wiley, Hoboken, 2010).

  3. Topics in Current Chemistry, Vol. 293: Functional Metal-Organic Frameworks Gas Storage, Separation and Catalysis Ed. by M. Schröder (Springer, Berlin/Heidelberg, 2010).

  4. Design and Construction of Coordination Polymers, Ed. by M.-C. Hong and L. Chen (Wiley, Hoboken, 2009).

  5. S. R. Batten, S. M. Neville, and D. R. Turner, Coordination Polymers—Design, Analysis and Application (RSC, 2008).

    Google Scholar 

  6. M. Fujita, Y. J. Kwon, S. Washizu, and K. Orgua, J. Am. Chem. Soc. 116, 1151 (1994).

    Article  CAS  Google Scholar 

  7. A. J. Blake, N. R. Champness, P. Hubberstey, et al., Coord. Chem. Rev. 183, 117 (1999).

    Article  CAS  Google Scholar 

  8. B. Moulton and M. J. Zavorotko, Chem. Rev. 101, 1629 (2001).

    Article  CAS  Google Scholar 

  9. M. Eddaoudi, D. B. Moler, H. Li, et al., Acc. Chem. Res. 34, 319 (2001).

    Article  CAS  Google Scholar 

  10. G. Férey, Chem. Mater. 13, 3084 (2001).

    Article  Google Scholar 

  11. M. Eddaoudi, J. Kim, N. Rosi, et al., Science 295, 469 (2002).

    Article  CAS  Google Scholar 

  12. C. Janiak, Dalton Trans., 2781 (2003).

    Google Scholar 

  13. S. L. James, Chem. Soc. Rev. 32, 276 (2003).

    Article  CAS  Google Scholar 

  14. B. Kesanli and W. Lin, Coord. Chem. Rev. 246, 305 (2003).

    Article  CAS  Google Scholar 

  15. S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 43, 2334 (2004).

    Article  CAS  Google Scholar 

  16. M. J. Rosseinsky, Micropor. Mesopor. Mater. 73, 15 (2004).

    Article  CAS  Google Scholar 

  17. R. Dobrawa and F. Würthner, J. Polym. Sci.: A: Polym. Chem., 43, 4981 (2005).

    Article  CAS  Google Scholar 

  18. M. Ruben, J.-M. Lehn, and P. Müller, Chem. Soc. Rev. 35, 1056 (2006).

    Article  CAS  Google Scholar 

  19. N. R. Champness, Dalton Trans., 877 (2006).

    Google Scholar 

  20. C. J. Kepert, Chem. Commun., 695 (2006).

    Google Scholar 

  21. C.-F. Chow, S. Fujii, and J.-M. Lehn, Angew. Chem. Int. Ed. 46, 5007 (2007).

    Article  CAS  Google Scholar 

  22. D. N. Dybtsev, M. P. Yutkin, E. V. Peresypkina, et al., Inorg. Chem. 46, 6843 (2007).

    Article  CAS  Google Scholar 

  23. A. D. Burrows, C. G. Frost, M. F. Mahon, and C. Richardson, Angew. Chem. Int. Ed. 47, 8482 (2008).

    Article  CAS  Google Scholar 

  24. S. Bureekaew, S. Shimomura, and S. Kitagawa, Sci. Technol. Adv. Mater. 9, 014108 (2008).

    Article  Google Scholar 

  25. G. Ferey, Chem. Soc. Rev. 37, 191 (2008).

    Article  CAS  Google Scholar 

  26. J. R. Long and O. M. Yaghi, Chem. Soc. Rev. 38, 1213 (2009).

    Article  CAS  Google Scholar 

  27. L. J. Murray, M. Dinca, and J. R. Long, Chem Soc. Rev. 38, 1294 (2009).

    Article  CAS  Google Scholar 

  28. Sh. Noro, S. Kitagawa, T. Akutagawa, and T. Nakamura, Progr. Polym. Sci. 34, 240 (2009).

    Article  CAS  Google Scholar 

  29. S. Horike, S. Shimomura, and S. Kitagawa, Nat. Chem. 1, 695 (2009).

    Article  CAS  Google Scholar 

  30. W. L. Leong and J. J. Vittal, Chem. Rev. 111, 688 (2010).

    Article  Google Scholar 

  31. A. D. Naik, M. M. Dîrtu, A. P. Railliet, et al., Polymers 3, 1750 (2011).

    Article  CAS  Google Scholar 

  32. S. Dalai, J. Phys. Sci. 15, 223 (2011).

    Google Scholar 

  33. S. R. Batten, N. R. Champness, X.-M. Chen, et al., Cryst. Eng. Commun. 14, 3001 (2012).

    Article  CAS  Google Scholar 

  34. C.-P. Li, C.-S. Liu, and S.-M. Fang, Coord. Chem. Rev. 257, 1282 (2013).

    Article  Google Scholar 

  35. C.-Y. Su, Coord. Chem. Rev. 2013, 257, 1373 (2013).

    Google Scholar 

  36. T. Yamada, K. Otsubo, R. Makiura, and H. Kitagawa, Chem. Soc. Rev. 42, 6655 (2013).

    Article  CAS  Google Scholar 

  37. M. L. Foo, R. Matsuda, and S. Kitagawa, Chem. Mater. 26, 310 (2014).

    Article  CAS  Google Scholar 

  38. A. N. Khlobystov, A. J. Blake, N. R. Champness, et al., Coord. Chem. Rev. 222, 152 (2001).

    Article  Google Scholar 

  39. S.-L. Zheng, M.-L. Tong, and X.-M. Chen, Coord. Chem. Rev. 246, 185 (2003).

    Article  CAS  Google Scholar 

  40. M. N. Kozlova, S. Ferlay, S. E. Solovieva, et al., Dalton Trans., 5126 (2007).

    Google Scholar 

  41. Y.-B. Dong, J.-P. Ma, R.-O. Huang, et al., Dalton Trans., 1472 (2003)

    Google Scholar 

  42. M. Oh, C. L. Stern, and C. A. Mirkin, Inorg. Chem. 44, 2647 (2005).

    Article  CAS  Google Scholar 

  43. S. Z. Vatsadze, A. G. Golikov, A. P. Kriven’ko, and N. V. Zyk, Russ. Chem. Rev. 77, 661 (2008).

    Article  CAS  Google Scholar 

  44. S. Z. Vatsadze, M. A. Kovalkina, N. V. Sviridenkova, et al., Cryst. Eng. Commun. 6, 112 (2006).

    Article  Google Scholar 

  45. S. Z. Vatsadze, I. A. Vatsadze, M. A. Manaenkova, et al., Russ. Chem. Bull., Int. Ed. 56, 1775 (2007).

    Article  CAS  Google Scholar 

  46. A. A. M. Aly, S. Z. Vatsadze, A. V. Chernikov, et al., Polyhedron 26, 3925 (2007).

    Article  CAS  Google Scholar 

  47. S. Z. Vatsadze, G. V. Gavrilova, F. S. Zyuz’kevich, et al., Russ. Chem. Bull. 65, 1761 (2006).

    Article  Google Scholar 

  48. S. Vatsadze, M. Al-Anber, W. R. Thiel, et al., J. Solid State Electrochem. 9, 764 (2005).

    Article  CAS  Google Scholar 

  49. D. Das and K. Biradha, Inorg. Chem. Frontiers, 2017, doi 10.1039/C7QI00328E

    Google Scholar 

  50. M. W. Hosseini, Acc. Chem. Res. 38, 313 (2005).

    Article  CAS  Google Scholar 

  51. K. Biradha and R. Santra, Chem. Soc. Rev. 42, 950 (2013).

    Article  CAS  Google Scholar 

  52. R. Santra, M. Garai, D. Mondal, and K. Biradha, Chem. Eur. J. 19, 489 (2013).

    Article  CAS  Google Scholar 

  53. R. Santra and K. Biradha, CrystEngComm 13, 3246 (2011).

    Article  CAS  Google Scholar 

  54. R. Santra, N. Ghosh, and K. Biradha, New J. Chem. 32, 1673 (2008).

    Article  CAS  Google Scholar 

  55. R. Santra and K. Biradha, CrystEngComm, 2008, 10, 1524.

    Article  CAS  Google Scholar 

  56. S. Z. Vatsadze, M. A. Manaenkova, N. V. Sviridenkova, et al., Russ. Chem. Bull., Int. Ed., 2006, 55, 1184.

    Article  CAS  Google Scholar 

  57. Comprehensive Coordination Chemistry, Ed. by G. V. Wilkinson (Pergamon Books Ltd, 1987) vol. 2, ch. 15.5.

  58. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Parts A+B, Wiley-VCH, 1997.

    Google Scholar 

  59. C. Pettinari, F. Marchetti, A. Cingoloni, et al., Polyhedron, 1998, 17, 1677.

    Article  CAS  Google Scholar 

  60. G. A. Lawrance, Chem. Rev., 1986, 86, 17.

    Article  CAS  Google Scholar 

  61. A. W. Addison, T. N. Rao, J. Reedijk, et al., J. Chem. Soc., Dalton Trans., 1984, 1349.

    Google Scholar 

  62. Cambridge Structural Database, ConQuest Version 1.12, CCDC 2009.

  63. G. M. Sheldrick, SHELXTL Version 5.1, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Siemens Analytical X-ray Instruments, Madison, WI, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. M. Aly.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, A.A.M., Vatsadze, S.Z., Walfort, B. et al. Coordination polymers of silver(I) with ditopic cross-conjugated dienone. Russ. J. Inorg. Chem. 62, 1584–1594 (2017). https://doi.org/10.1134/S0036023617120038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023617120038

Navigation