On the stability of Al13 Keggin cation in aqueous hydrogen peroxide solutions


We report the first attempt to study the behavior of the [AlO4Al12(OH)25(H2O)11]6+ (Al13) Keggin cation (KC) in water–peroxide solutions. Addition of hydrogen peroxide into an aqueous solution containing the Al13 KC reduces pH due to the acidity of hydrogen peroxide. According to the 27Al NMR studies of water–peroxide solutions prepared just before the NMR experiment, with their pH adjusted to the initial value of 5.5 with aqueous NaOH, the Al13 KC concentration decreases immediately once hydrogen peroxide is added to the initial system. Addition of 18.2 wt % hydrogen peroxide to the initial 0.88 mM Al13 solution gives rise to a fourfold decline in Al13 polyoxo cation concentration to 0.22 mM. Then, the KC concentration in the test system remains unchanged for 1 week. Large hydrogen peroxide amounts (27.9 wt % or higher) added to the initial system almost completely degrade the KC. Sodium sulfate added to the initial water–peroxide solution of Al13 chloride where the hydrogen peroxide concentration is 5.5 wt % precipitates the earlier described Al13 sulfate [AlO4Al12(OH)25(H2O)11](SO4)3 · 16H2O, where the aluminum polyoxo cation does not contain coordinated hydrogen peroxide molecules, peroxo or hydroperoxo groups as shown by X-ray diffraction.

This is a preview of subscription content, log in to check access.


  1. 1.

    Elements and Their Compounds in the Environment: Occurrence, Analysis, and Biological Relevance, Ed by R. A. Yokel, E. Merian, M. Anka, 2nd Ed. (Wiley, New York, 2004).

  2. 2.

    Aluminum and Its Role in Biology (Metal Ions Biol. Systems 24), Ed. by H. Sigel and A. Sigel (Marcel Dekker, New York, 1988).

  3. 3.

    T. W. Swaddle, J. Rosenqvist, P. Yu, et al., Science 308, 1450 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    W. H. Casey, Chem. Rev. 106, 1 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    R. Rinaldi, F. Y. Fujiwara, W. Holderich, et al., J. Catal. 244, 92 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    P. P. Pescarmona and P. A. Jacobs, Catal. Today 137, 52 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    D. Mandelli, A. C. N. Amaral, Yu. N. Kozlov, et al., Catal. Lett. 132, 235 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    R. Rinaldi and U. Schuchardt, J. Catal. 227, 109 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    A. J. Bonon, Yu. N. Kozlov, J. O. Bahu, et al., J. Catal. 319, 71 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    R. Rinaldi, H. F. N. de Oliveira, H. Schumannc, et al., J. Mol. Catal. A 307, 1 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    D. Mandelli, K. C. Chiacchio, Yu. N. Kozlov, et al., Tetrahedron Lett. 49, 6693 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    R. Rinaldi, F. Y. Fujiwara, U. Schuchardt, et al., Cat. Commun. 5, 333 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    D. Mandelli, Yu. N. Kozlov, C. A. R. da Silva, et al., J. Mol. Catal. A 422, 216 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    M. L. Kuznetsov, Y. N. Kozlov, D. Mandelli, et al., Inorg. Chem. 50, 3996 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    S. Sladkevich, J. Gun, P. V. Prikhodchenko, et al., Nanotechnology. 23, 485601 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    S. Sladkevich, A. A. Mikhaylov, P. V. Prikhodchenko, et al., Inorg. Chem. 49, 9110 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    A. G. DiPasquale and J. M. Mayer, J. Am. Chem. Soc. 130, 1812 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    A. V. Churakov, S. Sladkevich, O. Lev, et al., Inorg. Chem. 49, 4762 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    A. G. Medvedev, A. A. Mikhaylov, A. V. Churakov, et al., Inorg. Chem. 54, 8058 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    A. A. Mikhaylov, A. G. Medvedev, A. V. Churakov, et al., Chem.-Eur. J. 22, 2980 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    S. Sladkevich, V. Gutkin, O. Lev, et al., J. Sol-Gel Sci. Technol. 50, 229 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    S. Sladkevich, J. Gun, P. V. Prikhodchenko, et al., Carbon 50, 5463 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Y. Wolanov, A. Shurki, P. V. Prikhodchenko, et al., Dalton Trans. 43, 16614 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    M. Wang and M. Muhammed, NanoStruct. Mater. 11, 1219 (1999).

    CAS  Article  Google Scholar 

  25. 25.

    E. Wänninen and A. Ringböm, Anal. Chim. Acta 12, 308 (1955).

    Article  Google Scholar 

  26. 26.

    W. C. Schumb, C. N. Satterfield, and R. P. Wentworth, Hydrogen Peroxide (Reinhold, New York, 1955).

    Google Scholar 

  27. 27.

    G. M. Sheldrick, SADABS. Program for Scaling and Correction of Area Detector Data (Univ. of Göttingen Göttingen, (1997).

    Google Scholar 

  28. 28.

    G. M. Sheldrick, Acta. Crystallogr., Sect. A 64, 112 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    G. Johansson, Acta Chem. Scand. 14, 771 (1960).

    CAS  Article  Google Scholar 

  30. 30.

    G. Johansson, Ark. Kemi 20, 321 (1963).

    CAS  Google Scholar 

  31. 31.

    S. E. Smart, J. Vaughn, I. Pappas, et al., Chem. Commun. 49, 11352 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    J. Rowsell and L. F. Nazar, J. Am. Chem. Soc. 122, 3777 (2000).

    CAS  Article  Google Scholar 

  33. 33.

    Z. Sun, H. Wang, H. Tong, et al., Inorg. Chem. 50, 559 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    A. V. Churakov, P. V. Prikhodchenko, and J. A. K. Howard, CrystEngComm 7, 664 (2005).

    CAS  Article  Google Scholar 

  35. 35.

    P. V. Prikhodchenko, A. G. Medvedev, T. A. Tripol’skaya, et al., CrystEngComm 13, 2399 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    I. Yu. Chernyshov, M. V. Vener, P. V. Prikhodchenko, et al., Cryst. Growth Des. 17, 214 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    A. V. Churakov, P. V. Prikhodchenko, J. A. K. Howard, et al., Chem. Commun. 28, 4224 (2009).

    Article  Google Scholar 

  38. 38.

    A. G. Medvedev, A. A. Mikhaylov, A. V. Churakov, et al., Acta Crystallogr., Sect. C 68, i20 (2012).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. V. Prikhodchenko.

Additional information

Original Russian Text © T.A. Tripol’skaya, L.V. Kolyadintseva, E.A. Mel’nik, A.A. Mikhaylov, A.G. Medvedev, A.V. Churakov, P.V. Prikhodchenko, 2017, published in Zhurnal Neorganicheskoi Khimii, 2017, Vol. 62, No. 11, pp. 1496–1502.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tripol’skaya, T.A., Kolyadintseva, L.V., Mel’nik, E.A. et al. On the stability of Al13 Keggin cation in aqueous hydrogen peroxide solutions. Russ. J. Inorg. Chem. 62, 1488–1494 (2017). https://doi.org/10.1134/S0036023617110201

Download citation