Russian Journal of Inorganic Chemistry

, Volume 62, Issue 8, pp 1077–1084 | Cite as

Electrochemical synthesis and structure of 2-amino-1-ethylbenzimidazole adducts of copper, cobalt, and zinc chelates in the N,N,S ligand environment

  • D. A. Garnovskii
  • G. G. Aleksandrov
  • N. I. Makarova
  • S. I. Levchenkov
  • V. G. Vlasenko
  • Ya. V. Zubavichus
  • A. I. Uraev
  • A. S. Burlov
Physical Methods of Investigation
  • 39 Downloads

Abstract

2-Amino-1-ethylbenzimidazole (L1) adducts with copper(II), cobalt(II), and zinc(II) chelates of N,N,S tridentate tosylamino-functionalized mercaptopyrazole-containing Schiff base (H2L), resulting from condensation of 2-tosylaminoaniline with 1-phenyl-3-methyl-4-formylpyrazole-5-thiol, with the general formula [ML · L1] were obtained by electrochemical method. The structure and composition of the complexes were confirmed by the data of C, H, N elemental analysis, IR and 1H NMR spectroscopy, and magnetochemical and X-ray spectral measurements. The mononuclear structure of the copper(II) adduct with coordination bond located on the pyridine type endocyclic nitrogen atom of 2-amino-1-ethylbenzimidazole was proved by X-ray diffraction.

Keywords

electrochemical synthesis Schiff bases aminoheterocycles metal-containing pharmaceuticals magnetochemistry X-ray spectral and X-ray diffraction analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Cassoux, L. Valade, and P.-L. Fabre, Comprehensive Coordination Chemistry II, Ed. by A. B. P. Lever, 200, vol. 1, p. 761.Google Scholar
  2. 2.
    A. Rodriguez and J. A. Garcia-Vazquez, Coord. Chem. Rev. 303, 42 (2015).CrossRefGoogle Scholar
  3. 3.
    M. Bernal, J. A. Garcia-Vazquez, J. Romero, et al., Inorg. Chim. Acta 295, 39 (1999).CrossRefGoogle Scholar
  4. 4.
    A. D. Garnovskii, A. S. Burlov, D. A. Garnovskii, et al., Polyhedron 18, 1985 (1999).CrossRefGoogle Scholar
  5. 5.
    J. Sanmartin, F. Novio, A. M. Garcia-Deibe, et al., Eur. J. Inorg. Chem., No. 10, 1719 (2008).CrossRefGoogle Scholar
  6. 6.
    A. S. Antsyshkina, G. G. Sadikov, A. S. Burlov, et al., Russ. J. Inorg. Chem. 50, 346 (2005).Google Scholar
  7. 7.
    D. A. Garnovskii, A. Sousa, A. S. Antsyshkina, et al., Izv. Akad. Nauk, Ser. Khim. 45, 1988 (1996).Google Scholar
  8. 8.
    D. A. Garnovskii, M. F. C. Guedes Da Silva, M. N. Kopylovich, et al., Polyhedron 22, 1335 (2003).CrossRefGoogle Scholar
  9. 9.
    A. S. Antsyshkina, G. G. Sadikov, A. S. Burlov, et al., Koord. Khim. 26, 730 (2000).Google Scholar
  10. 10.
    L. De Luca, Curr. Med. Chem. 13, 1 (2006).Google Scholar
  11. 11.
    E. Buncel, I. Onyido, and J. Label, Compd. Radiopharm. 45, 91 (2002).CrossRefGoogle Scholar
  12. 12.
    S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry (University Science Books, Mill Valley, 1994).Google Scholar
  13. 13.
    Concepts and Models in Bioinorganic Chemistry, Ed. by H.-B. Kraatz and N. Metzler-Nolte (Wiley-VCH, Weinheim, 2006).Google Scholar
  14. 14.
    P. Armo-Ochoa and F. Zamora, Coord. Chem. Rev. 276, 34 (2014).CrossRefGoogle Scholar
  15. 15.
    J. M. Matthews, F. E. Loughlin, and J. P. Mackay, Curr. Opin. Struct. Biol. 18, 484 (2008).CrossRefGoogle Scholar
  16. 16.
    D. A. Garnovskii, A. D. Garnovskii, A. P. Sadimenko, et al., Koord. Khim. 20, 17 (1994).Google Scholar
  17. 17.
    L.-A. de Jongh, C. E. Strasser, H. G. Raubenheimer, et al., Polyhedron 28, 3635 (2009).CrossRefGoogle Scholar
  18. 18.
    H. Kitamura, T. Ozawa, K. Jitsukawa, et al., Inorg. Chem. 39, 3924 (2000).CrossRefGoogle Scholar
  19. 19.
    D. A. Bashirov, T. S. Sukhikh, N. V. Kuratieva, et al., RSC Adv. 4, 28309 (2014).Google Scholar
  20. 20.
    E. V. Pakhmutova, A. E. Malkov, T. B. Mikhailova, et al., Russ. Chem. Bull. 52, 139 (2003).CrossRefGoogle Scholar
  21. 21.
    T. W. Stringfield and R. E. Sheperd, Inorg. Chem. Commun. 4, 760 (2001).CrossRefGoogle Scholar
  22. 22.
    I. A. Morkan, G. Kutalmis, and S. Özkar, J. Organomet. Chem. 689, 2319 (2004).CrossRefGoogle Scholar
  23. 23.
    C. M. Stanfest-Hayser, K. Mereiter, R. Schmid, and K. Kirchner, Dalton Trans., 2329 (2003).Google Scholar
  24. 24.
    I. Ya. Kvitko, Zh. Org. Khim. 5, 1685 (1969).Google Scholar
  25. 25.
    W. U. Malick and T. S. Sharma, J. Ind. Chem. Soc. 47, 167 (1970).Google Scholar
  26. 26.
    D. G. Tuck, Pure Appl. Chem. 51, 2005 (1979).CrossRefGoogle Scholar
  27. 27.
    A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instr. Meth. Phys. Res. A 603, 95 (2009).CrossRefGoogle Scholar
  28. 28.
    D. I. Kochubei, Yu. A. Babanov, K. I. Zamaraev, et al., X-ray Spectral Method of Studying Amorphous Solids: EXAFS Spectroscopy (Nauka. Sib. Otd., Novosibirsk, 1988) [in Russian].Google Scholar
  29. 29.
    M. Newville, J. Synchrotron Rad. 8, 96 (2001).CrossRefGoogle Scholar
  30. 30.
    S. I. Zabinsky, J. J. Rehr, A. Ankudinov, et al., Phys. Rev. B 52, 2995 (1995).CrossRefGoogle Scholar
  31. 31.
    CrysAlisPro, Agilent Technologies, Version 1.171.36.32.Google Scholar
  32. 32.
    G. M. Sheldrick, Program for the Refinement of Crystal Structure, Univ. of Göttingen, Göttingen, 1997.Google Scholar
  33. 33.
    L. N. Kurkovskaya, N. N. Shapet’ko, I. Ya. Kvitko, et al., Zh. Org. Khim. 10, 2210 (1974).Google Scholar
  34. 34.
    D. A. Garnovskii, S. I. Levchenkov, N. I. Makarova, et al., Russ. J. Coord. Chem. (in press).Google Scholar
  35. 35.
    A. S. Antsyshkina, G. G. Sadikov, A. S. Burlov, et al., Koord. Khim. 26, 730 (2000).Google Scholar
  36. 36.
    D. A. Garnovskii, G. G. Sadikov, A. S. Antsyshkina, et al., Crystallogr. Rep. 48, 426 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. A. Garnovskii
    • 1
  • G. G. Aleksandrov
    • 2
  • N. I. Makarova
    • 3
  • S. I. Levchenkov
    • 1
  • V. G. Vlasenko
    • 4
  • Ya. V. Zubavichus
    • 5
  • A. I. Uraev
    • 3
  • A. S. Burlov
    • 4
  1. 1.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia
  4. 4.Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  5. 5.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations