Skip to main content
Log in

Effect of the synthesis conditions on the size of magnetite nanoparticles produced by high-temperature reductive hydrolysis

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A study was made into the effect of the conditions (synthesis temperature, water content, iron salt(III) concentration, and nature of precipitant) of the synthesis of magnetite nanoparticles by high-temperature reductive hydrolysis of iron(III) salts in an ethylene glycol medium on their size and morphology. It was shown that is basically possible to carry out the direct synthesis of spherical particles with an average size of 55–170 nm while varying synthesis conditions. The obtained particles were characterized by X-ray powder diffraction analysis, and their magnetic properties were explored. The synthesized particles are ferrimagnets. The magnetic moments, numbers, and sizes of domains in magnetite particles of various sizes were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, Usp. Khim. 74, 539 (2005).

    Article  Google Scholar 

  2. R. Massart, IEEE Trans. Magn. 17, 1247 (1981). doi 10.1109/TMAG.1981.1061188

    Article  Google Scholar 

  3. G. Kandasamy and D. Maity, Int. J. Pharm. 496, 191 (2015). doi 10.1016/j.ijpharm.2015.10.058

    Article  CAS  Google Scholar 

  4. F. Yazdani, B. Fattahi, and N. Azizi, J. Magn. Magn. Mater. 406, 207 (2016). doi 10.1016/j.jmmm.2016. 01.026

    Article  CAS  Google Scholar 

  5. I. Martinez-Mera, M. E. Espinosa-Pesqueira, R. Pérez-Hernández, and J. Arenas-Alatorre, Mater. Lett. 61, 4447 (2007). doi 10.1016/j.matlet.2007.02.018

    Article  CAS  Google Scholar 

  6. S. C. Pang, S. F. Chin, and M. A. Anderson, J. Colloid Interface Sci. 311, 94 (2007). doi 10.1016/j.jcis.2007. 02.058

    Article  CAS  Google Scholar 

  7. Z. Li, Q. Sun, and M. Gao, Angew. Chem., Int. Ed. Engl. 44, 123 (2005). doi 10.1002/anie.200460715

    Article  CAS  Google Scholar 

  8. P. Padwal, R. Bandyopadhyaya, and S. Mehra, Langmuir 30, 15266 (2014). doi 10.1021/la503808d

    Article  CAS  Google Scholar 

  9. J. Ge, Y. Hu, M. Biasini, et al., Angew. Chem., Int. Ed. Engl. 46, 4342 (2007). doi 10.1002/anie.200700197

    Article  CAS  Google Scholar 

  10. T. Fan, D. Pan, and H. Zhang, Ind. Eng. Chem. Res. 50, 9009 (2011). doi 10.1021/ie200970j

    Article  CAS  Google Scholar 

  11. Sh. Guo, D. Li, L. Zhang, et al., Biomaterials 30, 1881 (2009). doi 10.1016/j.biomaterials.2008.12.042

    Article  Google Scholar 

  12. M. Lin and H. Huang, et al., Langmuir 29, 15433 (2013). doi 10.1021/la403577y

    Article  CAS  Google Scholar 

  13. TOPAS (Bruker AXS GmbH, Karlsruhe, Germany, 2005).

  14. G. Schwarzenbach and H. Flaschka, Die Komplexometrische Titration (Ferdinand Enke, Stuttgart, 1965).

    Google Scholar 

  15. A. G. Savchenko, S. V. Salikhov, E. V. Yurtov, and Yu. D. Yagodkin, Bull. Russ. Akad. Sci.: Phys. 77, 704 (2013).

    CAS  Google Scholar 

  16. S. V. Salikhov, A. G. Savchenko, I. S. Grebennikov, and E. V. Yurtov, Bull. Russ. Akad. Sci.: Phys. 79, 1106 (2015).

    CAS  Google Scholar 

  17. Yu. D. Yagodkin, S. V. Salikhov, and O. A. Ushakova, Zavod. Lab., Diagn. Mater. 79 (4), 41 (2013).

    CAS  Google Scholar 

  18. W. Kim, Ch. Suh, S. Cho, et al., Talanta 94, 348 (2012). doi 10.1016/j.talanta.2012.03.001

    Article  CAS  Google Scholar 

  19. A. E. Dosovitskii, E. V. Grishechkina, A. L. Mikhlin, et al., Russ. Chem. Bull. 65, 704 (2016).

    Article  CAS  Google Scholar 

  20. Tables of Physical Quantities, Ed. by I. K. Kikoin (Moscow, Atomizdat, 1976) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Grishechkina.

Additional information

Original Russian Text © A.E. Dosovitskii, E.V. Grishechkina, A.L. Mikhlin, D.I. Kirdyankin, V.M. Novotortsev, 2017, published in Zhurnal Neorganicheskoi Khimii, 2017, Vol. 62, No. 6, pp. 715–724.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dosovitskii, A.E., Grishechkina, E.V., Mikhlin, A.L. et al. Effect of the synthesis conditions on the size of magnetite nanoparticles produced by high-temperature reductive hydrolysis. Russ. J. Inorg. Chem. 62, 702–710 (2017). https://doi.org/10.1134/S0036023617060055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023617060055

Navigation