Russian Journal of Inorganic Chemistry

, Volume 62, Issue 3, pp 281–287 | Cite as

Effect of the degree of doping on the size and magnetic properties of nanocrystals La1 – x Zn x FeO3 synthesized by the sol–gel method

  • M. V. KnurovaEmail author
  • I. Ya. Mittova
  • N. S. Perov
  • O. V. Al’myasheva
  • Nguyen Anh Tien
  • V. O. Mittova
  • V. V. Bessalova
  • E. L. Viryutina
Synthesis and Properties of Inorganic Compounds


Nanopowders La1–x Zn x FeO3 (nominal degree of doping x nom = 0, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, and 0.4) were synthesized by the sol–gel method using aqueous ammonia as a precipitator and were then annealed at 950°C for 60 min. From the data of X-ray powder diffraction analysis and local electron probe microanalysis, the maximum actual limit of doping of lanthanum ferrite with zinc was determined: x = 0.072. The dependence of the particle size on the Zn2+ content was found to be nonmonotonic. The magnetic characteristics (specific magnetization J, coercivity H c, and magnetic susceptibility χ) of samples at temperatures of 300 and 100 K in fields of up to 1300 kA/m. It was shown that, with increasing degree of doping, J increases from 0.188 A m2/kg (at x = 0) to 0.245 A m2/kg (at x = 0.072), and χ varies nonmonotonically from 11.5 × 10–6 (at x = 0) to 15.3 × 10–6 (at x = 0.072) (at 300 K). With decreasing measurement temperature to 100 K, the magnetization and susceptibility monotonically increase.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. J. Berry, X. Ren, J. R. Gancedo, and J. F. Marco, Hyperfine Interact. 156, 335 (2004).CrossRefGoogle Scholar
  2. 2.
    Q. Zhang and F. Saito, J. Mater. Sci. 36, 2287 (2001).Google Scholar
  3. 3.
    D. Bayraktar, F. Clemens, S. Diethelm, et al., J. Eur. Ceram. Soc. 27, 2455 (2007).CrossRefGoogle Scholar
  4. 4.
    G. V. Bazuev, N. A. Zaitseva, V. N. Krasil’nikov, and D. G. Kellerman, Russ. J. Inorg. Chem. 48, 170 (2003).Google Scholar
  5. 5.
    A. F. Guseva, A. Ya. Neiman, and S. S. Nokhrin, Methods for Producing Nanosized Materials (UrGU, Yekaterinburg, 2008) [in Russian].Google Scholar
  6. 6.
    V. Yu. Kurochkin, A. A. Il’in, and A. P. Il’in, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 53, 90 (2010).Google Scholar
  7. 7.
    Nguyen Anh Tien, V. O. Mittova, I. Ya. Mittova, and Dinh Van Tac, Kondens. Sredy Mezhfaznye Granitsy 12, 56 (2010).Google Scholar
  8. 8.
    Nguyen Anh Tien, M. V. Knurova, Nguyen Thi Mo, et al., Nanosystems: Phys. Chem. Math. 5, 672 (2014).Google Scholar
  9. 9.
    V. A. Rabinovich and Z. Ya. Khavin, Concise Chemical Handbook (Khimiya, Leningrad, 1991) [in Russian].Google Scholar
  10. 10.
    K. Mukhopadhyay, A. S. Mahapatra, and P. K. Chakrabarti, J. Magn. Magn. Mater. 329, 133 (2013).CrossRefGoogle Scholar
  11. 11.
    Shuhua Dong, Kejing Xu, and Guishan Tian, J. Mater. Sci. 44, 2548 (2009).CrossRefGoogle Scholar
  12. 12.
    K. Mukhopadhyay, A. S. Mahapatra, and P. K. Chakrabarti, Mater. Lett. 159, 9 (2015).CrossRefGoogle Scholar
  13. 13.
    Irshad Bhat, Shahid Husain, Wasi Khan, and S. I. Patil, Mater. Res. Bull. 48, 4506 (2013).CrossRefGoogle Scholar
  14. 14.
    S. S. Karpova, V. A. Moshnikov, S. V. Myakin, and E. S. Kolovangina, Fiz. Tekh. Poluprovodn. (St. Petersburg) 47, 369 (2013).Google Scholar
  15. 15.
    Nguyen Anh Tien, I. Ya. Mittova, O. V. Almjasheva, et al., Glass Phys. Chem. 34, 756 (2008).CrossRefGoogle Scholar
  16. 16.
    A. I. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies, (Fizmatlit, Moscow, 2005) [in Russian].Google Scholar
  17. 17.
    D. Brandon and W. D. Kaplan, Microstructural Characterization of Materials (Wiley, Chichester, 1999).Google Scholar
  18. 18.
    JCPDC PCPDFWIN: A Windows Retrieval/Display Program for Assessing the ICDD PDF-2 Database (International Centre for Diffraction Data, 1997).Google Scholar
  19. 19.
    M. V. Knurova, Nguyen Anh Tien, V. O. Mittova, and I. Ya Mittova, Proceedings of the Third International Conference of CIS Countries on Sol–Gel Synthesis and Investigation of Inorganic Compounds, Hybrid Compounds, and Disperse Systems, September 8–12, 2014, Suzdal’, Russia (OAO Izdatel’stvo Ivanovo, Ivanovo, 2014), p. 137 [in Russian].Google Scholar
  20. 20.
    O. V. Al’myasheva, B. A. Fedorov, A. V. Smirnov, and V. V. Gusarov, Nanosyst.: Phys., Chem., Math. 1, 26 (2010).Google Scholar
  21. 21.
    R. Zboril, M. Mashlan, and D. Petridis, Chem. Mater. 14, 969 (2002).CrossRefGoogle Scholar
  22. 22.
    K. P. Belov, Magnetostriction Phenomena and Their Technical Applications (Nauka, Moscow, 1987) [in Russian].Google Scholar
  23. 23.
    V. M. Novotortsev, S. F. Marenkin, L. I. Koroleva, et al., Russ. J. Inorg. Chem. 54, 1350 (2009).CrossRefGoogle Scholar
  24. 24.
    S. F. Marenkin, V. M. Trukhan, I. V. Fedorchenko, et al., Russ. J. Inorg. Chem. 59, 355 (2014).CrossRefGoogle Scholar
  25. 25.
    S. F. Marenkin, A. D. Izotov, I. V. Fedorchenko, and V.M. Novotortsev, Russ. J. Inorg. Chem. 60, 295 (2015).CrossRefGoogle Scholar
  26. 26.
    D. P. Tang, R. Yuan, and Y. Q. Chai, Biotechnol. Lett. 28, 559 (2006).CrossRefGoogle Scholar
  27. 27.
    A. K. Gupta and M. Gupta, Biomater. 26, 3995 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. V. Knurova
    • 1
    Email author
  • I. Ya. Mittova
    • 1
  • N. S. Perov
    • 2
  • O. V. Al’myasheva
    • 3
  • Nguyen Anh Tien
    • 4
  • V. O. Mittova
    • 5
  • V. V. Bessalova
    • 2
  • E. L. Viryutina
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Ul’yanov (Lenin) LETI St. Petersburg State Electrotechnical UniversitySt. PetersburgRussia
  4. 4.Ho Chi Min City University of EducationHo Chi Min CityViet Nam
  5. 5.Burdenko Voronezh State Medical UniversityVoronezhRussia

Personalised recommendations