Skip to main content
Log in

Composite sorbents based on synthetic manganese oxide and carbon fiber

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Manganese oxides have been prepared on the surface of carbon fiber by simple methods: coprecipitation of manganese salts of different valence in the presence of fiber as a support or electrodeposition from Mn(II) salt solution on a carbon fiber cathode, in the presence of chitosan including, under oxidation with air oxygen conditions. The obtained samples have been characterized by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Sorption properties of the composites toward As(V) have been studied. The relationships between sorption properties, structure, Mn valence, and manganese oxide surface morphology have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Shanmugam and A. Gedanken, J. Phys. Chem. B 110, 24486 (2006).

    Article  CAS  Google Scholar 

  2. L.-C. Wang, Q. Liu, X.-S. Huang, et al., Appl. Catal. B: Environ. 88, 204 (2009).

    Article  CAS  Google Scholar 

  3. S. Ching, K. S. Krukowska, and S. L. Suib, Inorg. Chim. Acta 294, 123 (1999).

    Article  CAS  Google Scholar 

  4. S. A. Kirillov, T. V. Lesnichaya, N. M. Visloguzova, et al., New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells (Springer, Dordrecht, 2006).

    Google Scholar 

  5. T. Brousse, M. Toupin, R. Dugas, et al., J. Electrochem. Soc. 153, A2171 (2006).

    Article  CAS  Google Scholar 

  6. L.-C. Zang, Z.-H. Liu, H. Lv, et al., J. Phys. Chem. 111, 8418 (2007).

    Google Scholar 

  7. E. Raymundo-Piñero, V. Khomenko, E. Frackowiak, and F. Béguin, J. Electrochem. Soc. 152, A229 (2005).

    Article  Google Scholar 

  8. Y. U. Jeong and A. Manthiram, J. Electrochem. Soc. 149, A1419 (2002).

    Article  CAS  Google Scholar 

  9. S.-C. Pang, M. A. Anderson, and T. W. Chapman, J. Electrochem. Soc. 147, 444 (2000).

    Article  CAS  Google Scholar 

  10. M. Nakayama, T. Kanaya, and R. Inoue, Electrochem. Commun. 9, 1154 (2007).

    Article  CAS  Google Scholar 

  11. J. N. Broughton and M. J. Brett, Electrochim. Acta 50, 4814 (2005).

    Article  CAS  Google Scholar 

  12. H. Kanoh, W. Tang, Y. Makita, and K. Ooi, Langmuir 13, 6845 (1997).

    Article  CAS  Google Scholar 

  13. P. Stouff and J. Boulégue, Am. Mineral. 73, 1162 (1988).

  14. D. C. Golden, J. B. Dixon, and C. C. Chen, Clay Clay Miner. 34, 511 (1986).

    Article  CAS  Google Scholar 

  15. Y.-F. Shen, S. L. Suib, and C.-L. O’ Young, J. Am. Chem. Soc. 116, 11020 (1994).

    Article  CAS  Google Scholar 

  16. J. Luo and S. L. Suib, Chem. Commun. 1031 (1997).

    Google Scholar 

  17. M. Nakayama, S. Konishi, H. Tagashira, and K. Ogura, Langmuir 21, 354 (2005).

    Article  CAS  Google Scholar 

  18. M. Nakayama and H. Tagashira, Langmuir 22, 3864 (2006).

    Article  CAS  Google Scholar 

  19. J.-J. Xu, X.-L. Luo, Y. Du, and H.-Y. Chen, Electrochem. Commun. 6, 1169 (2004).

    Article  CAS  Google Scholar 

  20. N. Nagarajan, M. Cheong, and I. Zhitomirsky, Mater. Chem. Phys. 103, 47 (2007).

    Article  CAS  Google Scholar 

  21. A. Dyer, M. Pillinger, R. Hajula, and S. Amin, J. Mater. Chem. 10, 1867 (2000).

    Article  CAS  Google Scholar 

  22. A. Dyer, M. Pillinger, J. Newton, et al., Chem. Mater. 12, 3897 (2000).

    Article  Google Scholar 

  23. E. V. Saenko, Extended Abstract of Candidate’s Dissertation in Chemistry (Perm, 2007).

    Google Scholar 

  24. G. V. Leont’eva, L. G. Chirkova, and V. V. Vol’khin, Zh. Prikl. Khim. 53, 1229 (1980).

    Google Scholar 

  25. G. V. Leont’eva, Zh. Prikl. Khim. 70, 1615 (1997).

    Google Scholar 

  26. S. Ouvrard, M.-O. Simonnot, and M. Sardin, Ind. Eng. Chem. Res. 41, 2785 (2002).

    Article  CAS  Google Scholar 

  27. K. A. Kovalenko, G. R. Bochkarev, and G. I. Pushkareva, Voda: Khim. Ekol., No. 10, 80 (2013).

    Google Scholar 

  28. N. Ajith, A. A. Dalvi, K. K. Swain, et al., J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 48, 422 (2013).

    Article  CAS  Google Scholar 

  29. B. A. Manning, S. E. Rendorf, B. Bostick, and D. L. Suarez, Environ. Sci. Technol. 36, 976 (2002).

    Article  CAS  Google Scholar 

  30. B. J. Lafferty, M. Ginder-Vogel, and D. L. Sparks, Environ. Sci. Technol. 44, 8460 (2010).

    Article  CAS  Google Scholar 

  31. B. J. Lafferty, M. Ginder-Vogel, M. Zhu, et al., Environ. Sci. Technol. 44, 8467 (2010).

    Article  CAS  Google Scholar 

  32. B. J. Lafferty, M. Ginder-Vogel, and D. L. Sparks, Environ. Sci. Technol. 45, 9218 (2011).

    Article  CAS  Google Scholar 

  33. K. Babaeivelni, A. P. Khodadoust, and D. Bogdan, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 49, 1462 (2014).

    Article  CAS  Google Scholar 

  34. D. Ocinski, I. Jacukowicz-Sobala, and E. Kociolek-Balawejder, J. Appl. Polym. Sci. 131, 39489 (2014), doi 10.1002/APP.39489

    Article  Google Scholar 

  35. C. Tournassat, L. Charlet, D. Bosbach, and A. Manceau, Environ. Sci. Technol. 36, 493 (2002).

    Article  CAS  Google Scholar 

  36. M. Villalobos, I. N. Escobar-Quiroz, and C. Salazar-Camacho, Geochim. Cosmochim. Acta 125, 564 (2014).

    Article  CAS  Google Scholar 

  37. L. A. Zemskova, I. V. Sheveleva, N. N. Barinov, et al., Russ. J. Appl. Chem. 81, 1187 (2008).

    Article  CAS  Google Scholar 

  38. L. A. Zemskova, A. V. Voyt, N. N. Barinov, and T. A. Kaydalova, Glass Phys. Chem. 40, 1 (2014).

    Article  CAS  Google Scholar 

  39. G. H. A. Therese and P. V. Kamath, Chem. Mater. 12, 1195 (2000).

    Article  CAS  Google Scholar 

  40. Yu. Yu. Lur’e, Analytical Chemistry of Industrial Wastes (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  41. R. T. Cygan, J. E. Post, P. J. Heaney, and J. D. Kubiski, Am. Mineral. 97, 1505 (2012).

    Article  CAS  Google Scholar 

  42. M. Chigane and M. Ishikawa, J. Electrochem. Soc. 147, 2246 (2000).

    Article  CAS  Google Scholar 

  43. J. M. Cerato, M. F. Hochella, W. R. Knocke, et al., Environ. Sci. Thechnol. 44, 5881 (2010).

    Article  Google Scholar 

  44. M. Zhu, K. W. Paul, J. D. Kubiski, and D. L. Sparks, Environ. Sci. Technol. 43, 6655 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Zemskova.

Additional information

Original Russian Text © L.A. Zemskova, A.V. Voit, N.N. Barinov, Yu.M. Nikolenko, D.Kh. Shlyk, 2016, published in Zhurnal Neorganicheskoi Khimii, 2016, Vol. 61, No. 12, pp. 1628–1634.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemskova, L.A., Voit, A.V., Barinov, N.N. et al. Composite sorbents based on synthetic manganese oxide and carbon fiber. Russ. J. Inorg. Chem. 61, 1567–1572 (2016). https://doi.org/10.1134/S0036023616120226

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023616120226

Navigation