Morphology and electrochemical properties of a composite produced by a peroxide method on the basis of tin dioxide and carbon black

Abstract

Using peroxostannate as a precursor, a composite material based on tin dioxide and carbon black was obtained, in which tin dioxide forms a coating on the surface of carbon black nanoparticles. The synthesized material was characterized by electron microscopy and X-ray powder diffraction analysis, and also the electrochemical characteristics of this material as an anode material for lithium-ion batteries were studied. The material demonstrates good stability and rate performance, which is indicative of the efficiency of the peroxide method for producing promising inexpensive anode materials based on tin dioxide and carbon black.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Y.-F. Sun, S.-B. Liu, F.-L. Meng, et al., Sensors 12, 2610 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    S. G. Ansari, P. Boroojerdian, S. R. Sainkar, et al., Thin Solid Films 295, 271 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    S. Ferrere, A. Zaban, and B. A. Gsegg, J. Phys. Chem. B 101, 4490 (1997).

    CAS  Article  Google Scholar 

  4. 4.

    O. K. Varghese and L. K. Malhotra, Sens. Actuat. B 53, 19 (1998).

    CAS  Article  Google Scholar 

  5. 5.

    M. Peng, X. Cai, Y. P. Fu, et al., J. Power Sources 247, 249 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    L. W. Chou, Y. Y. Lin, and A. T. Wu, Appl. Surf. Sci. 277, 30 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    M. Liu, J. Y. Yang, S. L. Feng, et al., New J. Chem. 37, 1002 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    S. J. Li, Y. J. Li, Z. Chen, et al., J. Nanomater., 536810 (2012).

    Google Scholar 

  9. 9.

    E. O. Igbinovia and P. A. Ilenikhena, Int. J. Phys. Sci. 5, 1770 (2010).

    CAS  Google Scholar 

  10. 10.

    A. Y. El-Etre and S. M. Reda, Appl. Surf. Sci. 256, 6601 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Q. M. Bian, X. M. Yu, B. Z. Zhao, et al., Opt. Laser Technol. 45, 395 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    K. W. Min, Y. K. Kim, G. Shin, et al., Adv. Funct. Mater. 21, 119 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    B. Ling, X. W. Sun, J. L. Zhao, et al., J. Phys. Chem. C 114, 18390 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Y. F. Li, W. J. Yin, R. Deng, et al., NPG Asia Mater. 4, e30 (2012).

    Article  Google Scholar 

  15. 15.

    K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films 102, 1 (1983).

    CAS  Article  Google Scholar 

  16. 16.

    J. S. Lee, S. K. Sim, B. Min, et al., J. Crystal. Growth 267, 145 (2004).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Wang and J. Y. Lee, J. Phys. Chem. B 108, 17832 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    F. Wagner, Science 300, 1245 (2003).

    Article  Google Scholar 

  19. 19.

    L. Hoffman, B. J. Norris, and J. F. Wagner, Appl. Phys. Lett. 82, 733 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    R. E. Presley, C. L. Munsee, C.-H. Park, et al., J. Phys. D: Appl. Phys. 37, 2810 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    C. G. Granqvist and A. Hultåker, Thin Solid Films 411, 1 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).

    CAS  Article  Google Scholar 

  23. 23.

    B. G. Lewis and D. C. Paine, MRS Bull. 25, 22 (2000).

    CAS  Article  Google Scholar 

  24. 24.

    D. A. Popescu, J. M. Hermann, A. Ensuque, et al., Phys. Chem. Chem. Phys. 3, 2522 (2001).

    Article  Google Scholar 

  25. 25.

    G. Faglia, C. Baratto, and G. Sberveglieri, Appl. Phys. Lett. 86, 011923 (2005).

    Article  Google Scholar 

  26. 26.

    G. Xu, Y. W. Zhang, X. Sun, et al., J. Phys. Chem. B 109, 3269 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    A. K. Mukhopadhyay, P. Mitra, A. P. Chatterjee, et al., Ceram. Int. 26, 123 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    S. W. Lee, P. P. Tsai, and H. Chen, Sens. Actuat. B 67, 122 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    T. Seiyama, K. Fueki, J. Shiokawa, et al., Int. Meet. Chem. Sens., 597 (1983).

    Google Scholar 

  30. 30.

    S. Sladkevich, J. Gun, P. V. Prikhodchenko, et al., Nanotecnology 23, 485601 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    S. Sladkevich, V. Gutkin, O. Lev, et al., J. Sol-Gel Sci. Technol. 50, 229 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    E. A. Legurova, S. Sladkevich, O. Lev, et al., Russ. J. Inorg. Chem. 54, 824 (2009).

    Article  Google Scholar 

  33. 33.

    S. Sladkevich, J. Gun, P. V. Prikhodchenko, et al., Carbon 50, 5463 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    S. Sladkevich, A. A. Mikhaylov, P. V. Prikhodchenko, et al., Inorg. Chem. 49, 9110 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    A. G. Medvedev, A. A. Mikhaylov, A. V. Churakov, et al., Inorg. Chem. 54, 8058 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    P. V. Prikhodchenko, J. Gun, S. Sladkevich, et al., Chem. Mater. 24, 4750 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    D. Y. W. Yu, P. V. Prikhodchenko, C. W. Mason, et al., Nat. Commun. 4, 2922 (2013).

    Google Scholar 

  38. 38.

    D. Y. W. Yu, S. K. Batabyal, J. Gun, et al., Main Group Met. Chem. 38, 43 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    P. V. Prikhodchenko, D. Y. W. Yu, S. K. Batabyal, et al., J. Mater. Chem. A 2, 8431 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    A. A. Mikhaylov, A. G. Medvedev, C. W. Mason, et al., J. Mater. Chem. A 3, 20681 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    L. S. Zhang, L. Y. Jiang, H. J. Yan, et al., J. Mater. Chem. 20, 5462 (2010).

    CAS  Article  Google Scholar 

  42. 42.

    X. Y. Wang, X. F. Zhou, K. Yao, et al., Carbon 49, 133 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    Y. M. Li, X. J. Lv, J. Lu, et al., J. Phys. Chem. C 114, 21770 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    S. J. Ding, D. Y. Luan, F. Y. C. Boey, et al., Chem. Commun. 47, 7155 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    T. Lu, Y. P. Zhang, H. B. Li, et al., Electrochim. Acta 55, 4170 (2010).

    CAS  Article  Google Scholar 

  46. 46.

    P. C. Lian, X. F. Zhu, S. Z. Liang, et al., Electrochim. Acta 56, 4532 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    H. Kim, S. W. Kim, Y. U. Park, et al., Nano Res. 3, 813 (2010).

    CAS  Article  Google Scholar 

  48. 48.

    Z. F. Du, X. M. Yin, M. Zhang, et al., Mater. Lett. 64, 2076 (2010).

    CAS  Article  Google Scholar 

  49. 49.

    X. Wang, X. Q. Cao, L. Bourgeois, et al., Adv. Funct. Mater. 22, 2682 (2012).

    CAS  Article  Google Scholar 

  50. 50.

    D. W. Su, H. J. Ahn, and G. X. Wang, Chem. Commun. 49, 3131 (2013).

    CAS  Article  Google Scholar 

  51. 51.

    M. V. Vener, A. G. Medvedev, A. V. Churakov, et al., J. Phys. Chem. A 115, 13657 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    P. V. Prikhodchenko, A. G. Medvedev, T. A. Tripol’skaya, et al., CrystEngComm 13, 2399 (2011).

    CAS  Article  Google Scholar 

  53. 53.

    A. G. Medvedev, A. V. Shishkina, P. V. Prikhodchenko, et al., RSC Adv.5, 29601 (2015).

    CAS  Article  Google Scholar 

  54. 54.

    A. L. Gillon, et al., Cryst. Growth Des. 3, 663 (2003).

    CAS  Article  Google Scholar 

  55. 55.

    A. V. Churakov, P. V. Prikhodchenko, J. A. K. Howard, et al., Chem. Commun. 28, 4224 (2009).

    Article  Google Scholar 

  56. 56.

    R. M. Gnanamuthu and C. W. Lee, Mater. Chem. Phys. 130, 831 (2011).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. V. Prikhodchenko.

Additional information

Original Russian Text © A.A. Mikhaylov, A.G. Medvedev, T.A. Tripol’skaya, E.A. Mel’nik, P.V. Prikhodchenko, O. Lev, 2016, published in Zhurnal Neorganicheskoi Khimii, 2016, Vol. 61, No. 12, pp. 1640–1645.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mikhaylov, A.A., Medvedev, A.G., Tripol’skaya, T.A. et al. Morphology and electrochemical properties of a composite produced by a peroxide method on the basis of tin dioxide and carbon black. Russ. J. Inorg. Chem. 61, 1578–1583 (2016). https://doi.org/10.1134/S0036023616120147

Download citation