Advertisement

Russian Journal of Inorganic Chemistry

, Volume 61, Issue 12, pp 1578–1583 | Cite as

Morphology and electrochemical properties of a composite produced by a peroxide method on the basis of tin dioxide and carbon black

  • A. A. Mikhaylov
  • A. G. Medvedev
  • T. A. Tripol’skaya
  • E. A. Mel’nik
  • P. V. PrikhodchenkoEmail author
  • O. Lev
Physical Methods of Investigation

Abstract

Using peroxostannate as a precursor, a composite material based on tin dioxide and carbon black was obtained, in which tin dioxide forms a coating on the surface of carbon black nanoparticles. The synthesized material was characterized by electron microscopy and X-ray powder diffraction analysis, and also the electrochemical characteristics of this material as an anode material for lithium-ion batteries were studied. The material demonstrates good stability and rate performance, which is indicative of the efficiency of the peroxide method for producing promising inexpensive anode materials based on tin dioxide and carbon black.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.-F. Sun, S.-B. Liu, F.-L. Meng, et al., Sensors 12, 2610 (2012).CrossRefGoogle Scholar
  2. 2.
    S. G. Ansari, P. Boroojerdian, S. R. Sainkar, et al., Thin Solid Films 295, 271 (1997).CrossRefGoogle Scholar
  3. 3.
    S. Ferrere, A. Zaban, and B. A. Gsegg, J. Phys. Chem. B 101, 4490 (1997).CrossRefGoogle Scholar
  4. 4.
    O. K. Varghese and L. K. Malhotra, Sens. Actuat. B 53, 19 (1998).CrossRefGoogle Scholar
  5. 5.
    M. Peng, X. Cai, Y. P. Fu, et al., J. Power Sources 247, 249 (2014).CrossRefGoogle Scholar
  6. 6.
    L. W. Chou, Y. Y. Lin, and A. T. Wu, Appl. Surf. Sci. 277, 30 (2013).CrossRefGoogle Scholar
  7. 7.
    M. Liu, J. Y. Yang, S. L. Feng, et al., New J. Chem. 37, 1002 (2013).CrossRefGoogle Scholar
  8. 8.
    S. J. Li, Y. J. Li, Z. Chen, et al., J. Nanomater., 536810 (2012).Google Scholar
  9. 9.
    E. O. Igbinovia and P. A. Ilenikhena, Int. J. Phys. Sci. 5, 1770 (2010).Google Scholar
  10. 10.
    A. Y. El-Etre and S. M. Reda, Appl. Surf. Sci. 256, 6601 (2010).CrossRefGoogle Scholar
  11. 11.
    Q. M. Bian, X. M. Yu, B. Z. Zhao, et al., Opt. Laser Technol. 45, 395 (2013).CrossRefGoogle Scholar
  12. 12.
    K. W. Min, Y. K. Kim, G. Shin, et al., Adv. Funct. Mater. 21, 119 (2011).CrossRefGoogle Scholar
  13. 13.
    B. Ling, X. W. Sun, J. L. Zhao, et al., J. Phys. Chem. C 114, 18390 (2010).CrossRefGoogle Scholar
  14. 14.
    Y. F. Li, W. J. Yin, R. Deng, et al., NPG Asia Mater. 4, e30 (2012).CrossRefGoogle Scholar
  15. 15.
    K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films 102, 1 (1983).CrossRefGoogle Scholar
  16. 16.
    J. S. Lee, S. K. Sim, B. Min, et al., J. Crystal. Growth 267, 145 (2004).CrossRefGoogle Scholar
  17. 17.
    Y. Wang and J. Y. Lee, J. Phys. Chem. B 108, 17832 (2004).CrossRefGoogle Scholar
  18. 18.
    F. Wagner, Science 300, 1245 (2003).CrossRefGoogle Scholar
  19. 19.
    L. Hoffman, B. J. Norris, and J. F. Wagner, Appl. Phys. Lett. 82, 733 (2003).CrossRefGoogle Scholar
  20. 20.
    R. E. Presley, C. L. Munsee, C.-H. Park, et al., J. Phys. D: Appl. Phys. 37, 2810 (2004).CrossRefGoogle Scholar
  21. 21.
    C. G. Granqvist and A. Hultåker, Thin Solid Films 411, 1 (2002).CrossRefGoogle Scholar
  22. 22.
    M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).CrossRefGoogle Scholar
  23. 23.
    B. G. Lewis and D. C. Paine, MRS Bull. 25, 22 (2000).CrossRefGoogle Scholar
  24. 24.
    D. A. Popescu, J. M. Hermann, A. Ensuque, et al., Phys. Chem. Chem. Phys. 3, 2522 (2001).CrossRefGoogle Scholar
  25. 25.
    G. Faglia, C. Baratto, and G. Sberveglieri, Appl. Phys. Lett. 86, 011923 (2005).CrossRefGoogle Scholar
  26. 26.
    G. Xu, Y. W. Zhang, X. Sun, et al., J. Phys. Chem. B 109, 3269 (2005).CrossRefGoogle Scholar
  27. 27.
    A. K. Mukhopadhyay, P. Mitra, A. P. Chatterjee, et al., Ceram. Int. 26, 123 (2000).CrossRefGoogle Scholar
  28. 28.
    S. W. Lee, P. P. Tsai, and H. Chen, Sens. Actuat. B 67, 122 (2000).CrossRefGoogle Scholar
  29. 29.
    T. Seiyama, K. Fueki, J. Shiokawa, et al., Int. Meet. Chem. Sens., 597 (1983).Google Scholar
  30. 30.
    S. Sladkevich, J. Gun, P. V. Prikhodchenko, et al., Nanotecnology 23, 485601 (2012).CrossRefGoogle Scholar
  31. 31.
    S. Sladkevich, V. Gutkin, O. Lev, et al., J. Sol-Gel Sci. Technol. 50, 229 (2009).CrossRefGoogle Scholar
  32. 32.
    E. A. Legurova, S. Sladkevich, O. Lev, et al., Russ. J. Inorg. Chem. 54, 824 (2009).CrossRefGoogle Scholar
  33. 33.
    S. Sladkevich, J. Gun, P. V. Prikhodchenko, et al., Carbon 50, 5463 (2012).CrossRefGoogle Scholar
  34. 34.
    S. Sladkevich, A. A. Mikhaylov, P. V. Prikhodchenko, et al., Inorg. Chem. 49, 9110 (2010).CrossRefGoogle Scholar
  35. 35.
    A. G. Medvedev, A. A. Mikhaylov, A. V. Churakov, et al., Inorg. Chem. 54, 8058 (2015).CrossRefGoogle Scholar
  36. 36.
    P. V. Prikhodchenko, J. Gun, S. Sladkevich, et al., Chem. Mater. 24, 4750 (2012).CrossRefGoogle Scholar
  37. 37.
    D. Y. W. Yu, P. V. Prikhodchenko, C. W. Mason, et al., Nat. Commun. 4, 2922 (2013).Google Scholar
  38. 38.
    D. Y. W. Yu, S. K. Batabyal, J. Gun, et al., Main Group Met. Chem. 38, 43 (2015).CrossRefGoogle Scholar
  39. 39.
    P. V. Prikhodchenko, D. Y. W. Yu, S. K. Batabyal, et al., J. Mater. Chem. A 2, 8431 (2014).CrossRefGoogle Scholar
  40. 40.
    A. A. Mikhaylov, A. G. Medvedev, C. W. Mason, et al., J. Mater. Chem. A 3, 20681 (2015).CrossRefGoogle Scholar
  41. 41.
    L. S. Zhang, L. Y. Jiang, H. J. Yan, et al., J. Mater. Chem. 20, 5462 (2010).CrossRefGoogle Scholar
  42. 42.
    X. Y. Wang, X. F. Zhou, K. Yao, et al., Carbon 49, 133 (2011).CrossRefGoogle Scholar
  43. 43.
    Y. M. Li, X. J. Lv, J. Lu, et al., J. Phys. Chem. C 114, 21770 (2010).CrossRefGoogle Scholar
  44. 44.
    S. J. Ding, D. Y. Luan, F. Y. C. Boey, et al., Chem. Commun. 47, 7155 (2011).CrossRefGoogle Scholar
  45. 45.
    T. Lu, Y. P. Zhang, H. B. Li, et al., Electrochim. Acta 55, 4170 (2010).CrossRefGoogle Scholar
  46. 46.
    P. C. Lian, X. F. Zhu, S. Z. Liang, et al., Electrochim. Acta 56, 4532 (2011).CrossRefGoogle Scholar
  47. 47.
    H. Kim, S. W. Kim, Y. U. Park, et al., Nano Res. 3, 813 (2010).CrossRefGoogle Scholar
  48. 48.
    Z. F. Du, X. M. Yin, M. Zhang, et al., Mater. Lett. 64, 2076 (2010).CrossRefGoogle Scholar
  49. 49.
    X. Wang, X. Q. Cao, L. Bourgeois, et al., Adv. Funct. Mater. 22, 2682 (2012).CrossRefGoogle Scholar
  50. 50.
    D. W. Su, H. J. Ahn, and G. X. Wang, Chem. Commun. 49, 3131 (2013).CrossRefGoogle Scholar
  51. 51.
    M. V. Vener, A. G. Medvedev, A. V. Churakov, et al., J. Phys. Chem. A 115, 13657 (2011).CrossRefGoogle Scholar
  52. 52.
    P. V. Prikhodchenko, A. G. Medvedev, T. A. Tripol’skaya, et al., CrystEngComm 13, 2399 (2011).CrossRefGoogle Scholar
  53. 53.
    A. G. Medvedev, A. V. Shishkina, P. V. Prikhodchenko, et al., RSC Adv.5, 29601 (2015).CrossRefGoogle Scholar
  54. 54.
    A. L. Gillon, et al., Cryst. Growth Des. 3, 663 (2003).CrossRefGoogle Scholar
  55. 55.
    A. V. Churakov, P. V. Prikhodchenko, J. A. K. Howard, et al., Chem. Commun. 28, 4224 (2009).CrossRefGoogle Scholar
  56. 56.
    R. M. Gnanamuthu and C. W. Lee, Mater. Chem. Phys. 130, 831 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Mikhaylov
    • 1
  • A. G. Medvedev
    • 1
  • T. A. Tripol’skaya
    • 1
  • E. A. Mel’nik
    • 1
  • P. V. Prikhodchenko
    • 1
    Email author
  • O. Lev
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.The Casali Institute of Applied Chemistry, Institute of ChemistryThe Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat RamJerusalemIsrael

Personalised recommendations