Skip to main content

Effect of the introduction procedure and concentration of yttrium cations on the crystal structure of (1–x)ZrO2 · xY2O3 powders

Abstract

An integrated study of the crystal and local structures of complex oxides (1–x)ZrO2 · xY2O3 (x = 0.005–0.18, YSZ), precipitated from solutions of metal salts and annealed in air, was carried out. For the use of deposition from solutions, reverse co-precipitation was found to be the method of choice for introducing yttrium cations into YSZ, ensuring the maximum stabilization effect of high-temperature phases. An increase in the yttrium content induces polymorphic transformations, monoclinic phase (P21/a) → tetragonal phase (P42/nmc) (for x = 0.02) → cubic phase (Fm \(\bar 3\) m) (for x = 0.08), in the samples prepared at temperatures of ≤1000°C. A Raman study of the local structure of YSZ powders confirmed the formation of a single-phase tetragonal structure for the 2YSZ and 3YSZ samples and identified trace amounts of the tetragonal phase for the 8YSZ and 18YSZ samples with the cubic structure.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. J. Kelly and I. Denr., Dent. Mater. 24, 289 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    V. V. Popov and A. A. Pisarev, Materials and Processes of Production of Heat-Protective Coatings (NIYaU MIFI, Moscow, 2016) [in Russian].

    Google Scholar 

  3. 3.

    S. P. Jiang and S. H. Cha., J. Mater. Sci. 39, 4405 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    S. V. Yudintsev, S. V. Stefanovsky, B. S. Nikonov, et al., Radiochemistry 57, 187 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    H. Th. Rijnten, Formation, preparation, and properties of hydrous zirconia, in: Physical and Chemical Aspects of Adsorbents and Catalysts, Ed. by B. G. Linsen (Academic Press, London; New York, 1970; Mir, Moscow, 1973).

    Google Scholar 

  6. 6.

    Chemistry and Technology of Rare and Scattered Elements, Ed. by K. A. Bol’shakov (Vysshaya shkola, Moscow, 1976), vol. 2 [in Russian].

  7. 7.

    D. S. Rutman, Yu. S. Toropov, S. Yu. Pliner, et al., Zirconia Refractories (Metallurgiya, Moscow, 1985) [in Russian].

    Google Scholar 

  8. 8.

    P. A. Arsen’ev, V. B. Glushkova, A. A. Evdokimov, et al., Rare Earth Compounds: Zirconates, Hafnates, Niobates, Tantalates, and Antimonates (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  9. 9.

    G. N. Murav’eva, A. V. Fionov, E. V. Lunina, et al., Dokl. Chem. 371, 39 (2000).

    Google Scholar 

  10. 10.

    M. Yashima, S. Sasaki, and M. Kakihan., Acta Crystallogr. Sect B 50, 663 (1994).

    Article  Google Scholar 

  11. 11.

    V. N. Strekalovski., Yu. N. Makurin, and E. G. Vovkotrub, Izv. Akad. Nauk SSSR, Neorg. Mater. 19, 925 (1983).

    Google Scholar 

  12. 12.

    M. Chen, B. Hallstedt, and L. J. Gauckle., Solid State Ionics 170, 255 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    N. S. Jacobson, Z.-K. Liu, L. Kaufman, et al., J. Am. Ceram. Soc. 87, 1559 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    O. Fabrichnaya, Ch. Wang, M. Zinkevich, et al., J. Phase Equilib. Diff. 26, 591 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    N. A. Shabanova, V. V. Popov, and P. D. Sarkisov, Chemistry and Technology of Nanodispersed Oxides (Akademkniga, Moscow, 2006) [in Russian].

    Google Scholar 

  16. 16.

    V. V. Popo., Russ. J. Inorg. Chem. 60, 420 (2015).

    Article  Google Scholar 

  17. 17.

    V. V. Popo., Ya. V. Zubavichus, A. P. Menushenkov, et al., Russ. J. Inorg. Chem. 60, 16 (2015).

    Article  Google Scholar 

  18. 18.

    PCPDFWIN Version 2.1, JCPDS-ICDD, June 2000.

  19. 19.

    W. Kraus and G. Nolz., J. Appl. Crystallogr. 29, 301 (1996).

    CAS  Article  Google Scholar 

  20. 20.

    V. Petricek, M. Dusek, and L. Palatinus, Z. Kristallogr. 229, 345 (2014).

    CAS  Google Scholar 

  21. 21.

    D. A. Barlow, J. Baird, and C.-H. S., J. Cryst. Growth 264, 417 (2004).

    CAS  Article  Google Scholar 

  22. 22.

    V. F. Petrunin, V. V. Popo., Zhu Hongzhi, et al., Inorg. Mater. 40, 251 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    V. V. Popov, Doctoral Dissertation in Chemistry (Mendeleev Univ. of Chem. Technol. of Russia, Moscow, 2011).

    Google Scholar 

  24. 24.

    V. V. Popov, V. F. Petrunin, and S. A. Korovi., Russ. J. Inorg. Chem. 55, 1515 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    V. B. Glushkova and L. G. Shcherbakov., Dokl. Akad. Nauk SSSR 197, 377 (1971).

    CAS  Google Scholar 

  26. 26.

    V. V. Popov, A. P. Menushenkov, A. A. Yastrebtsev, et al., Russ. J. Inorg. Chem. 61, 403 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    X. Bokhimi, A. Morales, A. Garcia-Ruiz, et al., J. Solid State Chem. 142, 409 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    V. Ya. Shevchenko, A. E. Madison, and V. B. Glushkov., Fiz. Khim. Stekla 27, 419 (2001).

    Google Scholar 

  29. 29.

    T.-S. Sheu, T.-Y. Tien, and I.-W. Che., J. Am. Ceram. Soc. 75, 1108 (1992).

    CAS  Article  Google Scholar 

  30. 30.

    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Interscience, New York, 1986; Mir, Moscow, 1991).

    Google Scholar 

  31. 31.

    G. Witz, V. Shklover, W. Steurer, et al., J. Am. Ceram. Soc. 90, 2935 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    I. R. Gibson and J. T. S. Irvin., J. Am. Ceram. Soc. 84, 615 (2001).

    CAS  Article  Google Scholar 

  33. 33.

    V. V. Popo., Ya. V. Zubavichus, A. P. Menushenkov, et al., Russ. J. Inorg. Chem. 59, 279 (2014).

    Article  Google Scholar 

  34. 34.

    A. P. Menushenkov, V. V. Popov, V. A. Kabanova, et al., Phys. Procedia 71, 313 (2015).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Popov.

Additional information

Original Russian Text © V.V. Popov, A.A. Yastrebtsev, S.A. Korovin, N.A. Tsarenko, L.A. Arzhatkina, 2016, published in Zhurnal Neorganicheskoi Khimii, 2016, Vol. 61, No. 11, pp. 1431–1439.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popov, V.V., Yastrebtsev, A.A., Korovin, S.A. et al. Effect of the introduction procedure and concentration of yttrium cations on the crystal structure of (1–x)ZrO2 · xY2O3 powders. Russ. J. Inorg. Chem. 61, 1378–1386 (2016). https://doi.org/10.1134/S0036023616110164

Download citation