Study of tin dioxide–sodium stannate composite obtained by decomposition of peroxostannate as a potential anode material for lithium-ion batteries

Abstract

A tin dioxide–sodium stannate composite has been obtained by the thermal treatment of sodium peroxostannate nanoparticles at 500°C in air. X-ray powder diffraction study has revealed that the composite includes crystalline phases of cassiterite SnO2, sodium stannate Na2Sn2O5, and sodium hexahydroxostannate Na2Sn(OH)6. Scanning electron microscopy has shown that material morphology does not change considerably as compared with the initial tin peroxo compound. Electrochemical characteristics have been compared for the anodes of lithium-ion batteries based on tin dioxide–sodium stannate composite and anodes based on a material manufactured by the thermal treatment of graphene oxide–tin dioxide–sodium stannate composite at 500°C in air.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Y. Zhao, X. F. Li, B. Yan, et al., J. Power Sources 274, 869 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    M. M. Atabaki and R. Kovacevi., Electron. Mater. Lett. 9, 133 (2013).

    Article  Google Scholar 

  3. 3.

    S. P. Wu, R. Xu, M. J. Lu, et al., Adv. Energy Mater. 5, 1500400 (2015).

    Article  Google Scholar 

  4. 4.

    Y. F. Deng, C. C. Fang, and G. H. Chen, J. Power Sources 304, 81 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    M. Srivastava, J. Singh, T. Kuila, et al., Nanoscale 7, 4820 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    E. G. Ippolitov, T. A. Tripol’skaya, P. V. Prikhodchenko, and D. A. Pankrato., Russ. J. Inorg. Chem. 46, 851 (2001).

    Google Scholar 

  7. 7.

    D. A. Pankratov, P. V. Prikhodchenk., Yu. D. Perfil’ev, and E. G. Ippolitov, Izv. Akad. Nauk, Ser. Fiz. 65, 1030 (2001).

    Google Scholar 

  8. 8.

    P. V. Prikhodchenko, V. I. Privalov, T. A. Tripol’skaya, and E. G. Ippolito., Russ. J. Inorg. Chem. 46, 1881 (2001).

    Google Scholar 

  9. 9.

    P. V. Prikhodchenko, V. I. Privalov, T. A. Tripol’skaya, and E. G. Ippolito., Dokl. Chem. 381, 327 (2001).

    Article  Google Scholar 

  10. 10.

    A. V. Churakov, P. V. Prikhodchenko, E. G. Ippolitov, and M. Y. Antipi., Russ. J. Inorg. Chem. 47, 68 (2002).

    Google Scholar 

  11. 11.

    P. V. Prikhodchenko, A. V. Churakov, B. N. Novgorodov, et al., Russ. J. Inorg. Chem. 48, 16 (2003).

    Google Scholar 

  12. 12.

    N. A. Chumaevskii, P. V. Prikhodchenko, N. A. Minaeva, and E. G. Ippolito., Russ. J. Inorg. Chem. 48, 1538 (2003).

    Google Scholar 

  13. 13.

    P. V. Prikhodchenko, E. G. Ippolitov, E. A. Ustinova, et al., Russ. J. Inorg. Chem. 49, 1562 (2004).

    Google Scholar 

  14. 14.

    E. A. Legurova, S. Sladkevich, O. Lev, et al., Russ. J. Inorg. Chem. 54, 1562 (2004).

    Google Scholar 

  15. 15.

    S. Sladkevich, V. Gutkin, O. Lev, et al., J. Sol-Gel Sci. Technol. 50, 229 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    A. V. Churakov, S. Sladkevich, O. Lev, et al., Inorg. Chem. 49, 4762 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    S. Sladkevich, A. A. Mikhaylov, P. V. Prikhodchenko, et al., Inorg. Chem. 49, 9110 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    S. Sladkevich, J. Gun, P. V. Prikhodchenko, et al., Carbon 50, 5463 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    S. Sladkevich, J. Gun, P. V. Prikhodchenko, et al., Nanotecnology 23, 485601 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    P. V. Prikhodchenko, J. Gun, S. Sladkevich, et al., Chem. Mater. 24, 4750 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    D. Y. W. Yu, P. V. Prikhodchenko, C. W. Mason, et al., Nat. Commun. 4, 2922 (2013).

    Google Scholar 

  22. 22.

    P. V. Prikhodchenko, D. Y. W. Yu, S. K. Batabyal, et al., J. Mater. Chem. A 2, 8431 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    D. Y. W. Yu, S. K. Batabyal, J. Gun, et al., Main Group Met. Chem. 38, 43 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    A. A. Mikhaylov, A. G. Medvedev, C. W. Mason, et al., J. Mater. Chem. A 3, 20681 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    M. E. Pozin, Hydrogen Peroxide and Peroxo Compounds (Goskhimizdat, Moscow, 1951) [in Russian].

    Google Scholar 

  26. 26.

    J. Q. Zhao and Y. Wan., J. Mater. Chem. A 2, 14947 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    M. S. Park, G. X. Wang, Y. M. Kang, et al., Angew. Chem. 46, 750 (2007).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. V. Prikhodchenko.

Additional information

Original Russian Text © A.A. Mikhaylov, A.G. Medvedev, T.A. Tripol’skaya, E.A. Mel’nik, I.V. Shabalova, P.V. Prikhodchenko, O. Lev, 2016, published in Zhurnal Neorganicheskoi Khimii, 2016, Vol. 61, No. 11, pp. 1483–1489.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mikhaylov, A.A., Medvedev, A.G., Tripol’skaya, T.A. et al. Study of tin dioxide–sodium stannate composite obtained by decomposition of peroxostannate as a potential anode material for lithium-ion batteries. Russ. J. Inorg. Chem. 61, 1430–1435 (2016). https://doi.org/10.1134/S0036023616110139

Download citation