Advertisement

Russian Journal of Inorganic Chemistry

, Volume 61, Issue 11, pp 1430–1435 | Cite as

Study of tin dioxide–sodium stannate composite obtained by decomposition of peroxostannate as a potential anode material for lithium-ion batteries

  • A. A. Mikhaylov
  • A. G. Medvedev
  • T. A. Tripol’skaya
  • E. A. Mel’nik
  • I. V. Shabalova
  • P. V. PrikhodchenkoEmail author
  • O. Lev
Physical Methods of Investigation

Abstract

A tin dioxide–sodium stannate composite has been obtained by the thermal treatment of sodium peroxostannate nanoparticles at 500°C in air. X-ray powder diffraction study has revealed that the composite includes crystalline phases of cassiterite SnO2, sodium stannate Na2Sn2O5, and sodium hexahydroxostannate Na2Sn(OH)6. Scanning electron microscopy has shown that material morphology does not change considerably as compared with the initial tin peroxo compound. Electrochemical characteristics have been compared for the anodes of lithium-ion batteries based on tin dioxide–sodium stannate composite and anodes based on a material manufactured by the thermal treatment of graphene oxide–tin dioxide–sodium stannate composite at 500°C in air.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Zhao, X. F. Li, B. Yan, et al., J. Power Sources 274, 869 (2015).CrossRefGoogle Scholar
  2. 2.
    M. M. Atabaki and R. Kovacevi., Electron. Mater. Lett. 9, 133 (2013).CrossRefGoogle Scholar
  3. 3.
    S. P. Wu, R. Xu, M. J. Lu, et al., Adv. Energy Mater. 5, 1500400 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. F. Deng, C. C. Fang, and G. H. Chen, J. Power Sources 304, 81 (2016).CrossRefGoogle Scholar
  5. 5.
    M. Srivastava, J. Singh, T. Kuila, et al., Nanoscale 7, 4820 (2015).CrossRefGoogle Scholar
  6. 6.
    E. G. Ippolitov, T. A. Tripol’skaya, P. V. Prikhodchenko, and D. A. Pankrato., Russ. J. Inorg. Chem. 46, 851 (2001).Google Scholar
  7. 7.
    D. A. Pankratov, P. V. Prikhodchenk., Yu. D. Perfil’ev, and E. G. Ippolitov, Izv. Akad. Nauk, Ser. Fiz. 65, 1030 (2001).Google Scholar
  8. 8.
    P. V. Prikhodchenko, V. I. Privalov, T. A. Tripol’skaya, and E. G. Ippolito., Russ. J. Inorg. Chem. 46, 1881 (2001).Google Scholar
  9. 9.
    P. V. Prikhodchenko, V. I. Privalov, T. A. Tripol’skaya, and E. G. Ippolito., Dokl. Chem. 381, 327 (2001).CrossRefGoogle Scholar
  10. 10.
    A. V. Churakov, P. V. Prikhodchenko, E. G. Ippolitov, and M. Y. Antipi., Russ. J. Inorg. Chem. 47, 68 (2002).Google Scholar
  11. 11.
    P. V. Prikhodchenko, A. V. Churakov, B. N. Novgorodov, et al., Russ. J. Inorg. Chem. 48, 16 (2003).Google Scholar
  12. 12.
    N. A. Chumaevskii, P. V. Prikhodchenko, N. A. Minaeva, and E. G. Ippolito., Russ. J. Inorg. Chem. 48, 1538 (2003).Google Scholar
  13. 13.
    P. V. Prikhodchenko, E. G. Ippolitov, E. A. Ustinova, et al., Russ. J. Inorg. Chem. 49, 1562 (2004).Google Scholar
  14. 14.
    E. A. Legurova, S. Sladkevich, O. Lev, et al., Russ. J. Inorg. Chem. 54, 1562 (2004).Google Scholar
  15. 15.
    S. Sladkevich, V. Gutkin, O. Lev, et al., J. Sol-Gel Sci. Technol. 50, 229 (2009).CrossRefGoogle Scholar
  16. 16.
    A. V. Churakov, S. Sladkevich, O. Lev, et al., Inorg. Chem. 49, 4762 (2010).CrossRefGoogle Scholar
  17. 17.
    S. Sladkevich, A. A. Mikhaylov, P. V. Prikhodchenko, et al., Inorg. Chem. 49, 9110 (2010).CrossRefGoogle Scholar
  18. 18.
    S. Sladkevich, J. Gun, P. V. Prikhodchenko, et al., Carbon 50, 5463 (2012).CrossRefGoogle Scholar
  19. 19.
    S. Sladkevich, J. Gun, P. V. Prikhodchenko, et al., Nanotecnology 23, 485601 (2012).CrossRefGoogle Scholar
  20. 20.
    P. V. Prikhodchenko, J. Gun, S. Sladkevich, et al., Chem. Mater. 24, 4750 (2012).CrossRefGoogle Scholar
  21. 21.
    D. Y. W. Yu, P. V. Prikhodchenko, C. W. Mason, et al., Nat. Commun. 4, 2922 (2013).Google Scholar
  22. 22.
    P. V. Prikhodchenko, D. Y. W. Yu, S. K. Batabyal, et al., J. Mater. Chem. A 2, 8431 (2014).CrossRefGoogle Scholar
  23. 23.
    D. Y. W. Yu, S. K. Batabyal, J. Gun, et al., Main Group Met. Chem. 38, 43 (2015).CrossRefGoogle Scholar
  24. 24.
    A. A. Mikhaylov, A. G. Medvedev, C. W. Mason, et al., J. Mater. Chem. A 3, 20681 (2015).CrossRefGoogle Scholar
  25. 25.
    M. E. Pozin, Hydrogen Peroxide and Peroxo Compounds (Goskhimizdat, Moscow, 1951) [in Russian].Google Scholar
  26. 26.
    J. Q. Zhao and Y. Wan., J. Mater. Chem. A 2, 14947 (2014).CrossRefGoogle Scholar
  27. 27.
    M. S. Park, G. X. Wang, Y. M. Kang, et al., Angew. Chem. 46, 750 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Mikhaylov
    • 1
  • A. G. Medvedev
    • 1
  • T. A. Tripol’skaya
    • 1
  • E. A. Mel’nik
    • 1
  • I. V. Shabalova
    • 1
  • P. V. Prikhodchenko
    • 1
    Email author
  • O. Lev
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Casali Center of Applied Chemistrythe Hebrew University of JerusalemGivat-Ram, JerusalemIsrael

Personalised recommendations