Russian Journal of Inorganic Chemistry

, Volume 61, Issue 11, pp 1397–1402 | Cite as

Four- and five-coordinate metal atoms in a supramolecular polymeric assembly of silver(I) with (4-methyl-2-quinolylthio)acetate

  • Yu. V. Kokunov
  • Yu. E. Gorbunova
  • V. V. Kovalev
  • L. D. Popov
  • S. A. Borodkin
  • G. A. Razgonyaeva
  • S. A. Kozyukhin
Coordination Compounds

Abstract

The coordination compound [Ag2L2(H2O)2] · 2H2O (I), L = C12H10NO2S has been synthesized by the reaction of AgNO3 with 4-methyl-2-quinolylthioacetic acid (HL) preliminarily neutralized with an equimolar amount of NBu4OH. Its crystal structure has been determined, and luminescence properties have been studied. Crystals of I are monoclinic, space group C2/c, a = 31.239(6) Å, b = 12.056(2) Å, c = 16.846(3) Å, β = 122.17(3)°, V = 5370.4(2) Å3, ρcalc = 1.861 g/cm3, Z = 16. The structure is formed by two crystallographically nonequivalent silver atoms Ag(1) and Ag(2) and two tridentate bridging ligands L coordinated through the S, N, and O atoms. These atoms, together with water molecules, form the coordination environments of the metal atoms with CN = 5 and 4, respectively. The Ag+ ions and the tridentate ligands form infinite [Ag4L4]n bands extended in the [001] direction. The presence of outer-sphere water molecules involved in O–H···O hydrogen bonding is responsible for the formation of a supramolecular framework structure. The photoluminescence spectrum of compound I shows two bands at ~450 and ~485 nm corresponding to the blue spectral range.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Mehrotra and R. Bohra, Metal Carboxylates (Academic Press, London, 1983), p. 396.Google Scholar
  2. 2.
    M. A. Kiskin and I. L. Eremenk., Usp. Khim. 75, 627 (2006).CrossRefGoogle Scholar
  3. 3.
    A. V. Volkov, M. A. Moskvina, I. V. Karachevtsev, et al., Vysokomol. Soedin. A 40, 45 (1998).Google Scholar
  4. 4.
    G. Liu, X. Yan, Z. Lu, et al., Chem. Mater. 17, 985 (2005).Google Scholar
  5. 5.
    Yu. V. Kokuno., Yu. E. Gorbunova, L.D. Popov, et al., Russ. J. Coord. Chem. 42, 323 (2016).Google Scholar
  6. 6.
    A. G. Young and L. R. Hanto., Coord. Chem. Rev. 252, 1346 (2008).CrossRefGoogle Scholar
  7. 7.
    X. Jin, X. Xie, H. Qiun, et al., Chem. Commun., 600 (2002).Google Scholar
  8. 8.
    Y. Suenaga, K. Kitamur., Sowa T. Kuroda, et al., Inorg. Chim. Acta 328, 105 (2002).CrossRefGoogle Scholar
  9. 9.
    G. F. Swiegers and T. J. Malefets., J. Chem. Rev. 100, 3483 (2000).CrossRefGoogle Scholar
  10. 10.
    A. A. Avetisyan and I. L. Aleksanya., Khim. Geterotsikl. Soedin., no. 5, 403 (2005).Google Scholar
  11. 11.
    G. M. Sheldric., Acta Crystallogr. Sect. A 64, 112 (2008).CrossRefGoogle Scholar
  12. 12.
    Yu. V. Kokuno., Yu. E. Gorbunova, V. V. Kovalev, and S. A. Kozyukhin, Russ. J. Coord. Chem. 41, 747 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Yu. V. Kokunov
    • 1
  • Yu. E. Gorbunova
    • 1
  • V. V. Kovalev
    • 1
  • L. D. Popov
    • 2
  • S. A. Borodkin
    • 2
  • G. A. Razgonyaeva
    • 1
  • S. A. Kozyukhin
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations