Advertisement

Russian Journal of Inorganic Chemistry

, Volume 61, Issue 11, pp 1419–1422 | Cite as

Structure of two new compounds of fluoroquinolone antibiotics with mineral acids

  • N. N. GolovnevEmail author
  • A. D. Vasil’ev
Coordination Compounds

Abstract

New compounds of sparfloxacin (C19H22F2N4O3, SfH) and levofloxacin (C18H20FN3O4, LevoH) with mineral acids, namely, sparfloxacinium bromide (SfH · HBr, I) and levofloxacindium diperchlorate (LevoH · 2HClO4, II), have been synthesized and characterized by X-ray diffraction. Crystallographic data are a = 7.7151(7) Å, b = 26.109(3) Å, с = 10.008(1) Å, β = 103.556(1)°, V = 1959.7(3) Å3, space group P21/n, Z = 4 for I and a = 9.727(6) Å, b = 20.440(12) Å, с = 12.286(7) Å, β = 104.327(8)°, V = 2367(2)Å3, space group P21, Z = 4 for II. The structures of these compounds are stabilized by intra- and intermolecular hydrogen bonds and π–π interaction between SfH2 + or LevoH3 2+ ions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Mitsher, Chem. Rev. 105, 559 (2005).CrossRefGoogle Scholar
  2. 2.
    D. Shingnapurkar, R. Butcher, Z. Afrasiabi, et al., Inorg. Chem. Commun. 10, 459 (2007).CrossRefGoogle Scholar
  3. 3.
    G. E. Stein and D. H. Havliche., Pharmacotherapy 17, 1139 (1997).Google Scholar
  4. 4.
    E. N. Padeiskaya, Prevention, Diagnosis, and Pharmacotherapy of Some Infectious Diseases (Bioinform, Moscow, 2002) [in Russian].Google Scholar
  5. 5.
    C.-L. Zhang and Y. J. Wan., Chem. Eng. Data 53, 1295 (2008).CrossRefGoogle Scholar
  6. 6.
    M. Hewitt, M. T. D. Cronin, S. J. Enoch, et al., J. Chem. Inf. Model 49 (11), 2572 (2009).CrossRefGoogle Scholar
  7. 7.
    A. Llinas, J. C. Burley, T. J. Prior, et al., Cryst. Growth Des. 8 (1), 114 (2008).CrossRefGoogle Scholar
  8. 8.
    A. D. Vasiliev and N. N. Golovne., J. Struct. Chem. 54, 607 (2013).CrossRefGoogle Scholar
  9. 9.
    N. N. Golovnev, I. I. Golovneva, M. S. Molokeev, and G. A. Glushchenk., J. Struct. Chem. 54, 377 (2013).CrossRefGoogle Scholar
  10. 10.
    N. N. Golovnev, S. D. Kirik, and A. D. Vasilie., J. Mol. Struct. 1021, 112 (2012).CrossRefGoogle Scholar
  11. 11.
    A. D. Vasil’ev and N. N. Golovne., Russ. J. Inorg. Chem. 57, 248 (2012).CrossRefGoogle Scholar
  12. 12.
    A. D. Vasiliev and N. N. Golovne., J. Struct. Chem. 51, 183 (2010).Google Scholar
  13. 13.
    G. M. Sheldrick, SADABS, Version 2.01 (Bruker, Madison, Wisconsin, USA, 2004).Google Scholar
  14. 14.
    G. M. Sheldrick, SHELXTL, Version 6.10 Bruker, Madison, Wisconsin, USA, 2004).Google Scholar
  15. 15.
    Cambridge Structural Database. Version 5.35 (Univ. of Cambridge, Cambridge (UK), 2013).Google Scholar
  16. 16.
    A. D. Vasil’ev and N. N. Golovne., Russ. J. Inorg. Chem. 59, 322 (2014).CrossRefGoogle Scholar
  17. 17.
    M. D. Prasanna and T. N. G. Ro., J. Mol. Struct. 559, 255 (2001).CrossRefGoogle Scholar
  18. 18.
    A. D. Vasiliev, N. N. Golovnev, M. S. Molokeev, and T. D. Churilo., J. Struct. Chem. 46, 363 (2005).CrossRefGoogle Scholar
  19. 19.
    J. W. Steed and J. L. Atwood, Supramolecular Chemistry, 1st Ed. (CRC Press, 2004; IKTs Akademkniga, Moscow, 2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Siberian Federal UniversityKrasnoyarskRussia
  2. 2.Kirenskii Institute of Physics, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations